基于GA⁃SVR的薄壁叶片辅助支撑布局优化方法
收稿日期: 2021-12-10
修回日期: 2021-12-14
录用日期: 2021-12-21
网络出版日期: 2022-01-11
基金资助
国家重点研发计划(2020YFB1710400);陕西省自然科学基础研究计划面上项目(2021JM-054);国家自然科学基金(52005413);陕西省自然科学基础研究计划(2020JQ-183)
Layout optimization of auxiliary support for thin-walled blade based on GA-SVR
Received date: 2021-12-10
Revised date: 2021-12-14
Accepted date: 2021-12-21
Online published: 2022-01-11
Supported by
National Key R&D Program of China(2020YFB1710400);Natural Science Basic Research Program of Shaanxi(2021JM-054);National Natural Science Foundation of China(52005413);Natural Science Basic Research Program of Shaanxi(2020JQ-183)
作为一种典型的复杂曲面薄壁件,叶片在铣削加工过程中极易发生“让刀”,即弹性变形,严重影响着叶片的加工精度。针对该问题,设计了四自由度回转辅助支撑机构增加叶片的加工刚度,并提出了一种基于GA-SVR的薄壁叶片辅助支撑布局优化方法。首先,建立了综合考虑材料去除以及铣削力与弹性变形耦合效应的叶片铣削加工有限元仿真模型。其次,以辅助支撑布局作为设计变量,最大加工弹性变形和整体弹性变形均方差作为布局优劣评价指标,采用拉丁超立方试验设计和有限元仿真模型计算评价指标并生成样本集,再以支持向量机回归(SVR)对样本集进行训练获得评价指标的代理预测模型。然后,采用精英策略遗传算法(GA)优化薄壁叶片的辅助支撑布局。最后,进行了薄壁叶片铣削加工及三坐标测量实验,结果表明优化后的辅助支撑布局方案对叶片加工弹性变形的抑制程度可达57.6%。
郑志阳 , 张阳 , 张钊 , 吴宝海 , 张莹 . 基于GA⁃SVR的薄壁叶片辅助支撑布局优化方法[J]. 航空学报, 2023 , 44(4) : 426805 -426805 . DOI: 10.7527/S1000-6893.2021.26805
As a typical thin-walled workpiece with complex curved surface, the blade is prone to deflection, that is, elastic deformation, which seriously affects the machining accuracy of the blade. As to this problem, a four degree-of-freedom rotary auxiliary support mechanism is designed to increase the machining rigidity of the blade, and a layout optimization method of auxiliary support for thin-wall blade based on GA is proposed. Firstly, a finite element simulation model for blade milling is established considering material removal and the coupling effect between milling force and elastic deformation. Secondly, the layout scheme of auxiliary support is taken as design variable, the largest value and standard deviation of overall machining elastic deformation are taken as the quality evaluation index of the layout. The sample set is constructed by Latin hypercube design and finite element simulation model. The surrogate forecast model is trained with Support Vector machine Regression (SVR). Then, elite strategy Genetic Algorithm (GA) is used to optimize the auxiliary support layout of thin-walled blade. Finally, the milling and CMM experiments of thin-walled blade are carried out, and the results show that the optimal auxiliary support layout scheme can suppress the blade elastic deformation by 57.6%.
1 | TAO W, CAO Y L, YANG J X. Analysis of the influence of blade’s machining error on aerodynamic performance of impeller based on NUMECA[J]. Procedia CIRP, 2015, 27: 155-162. |
2 | 曹玉杰. 复杂曲面薄壁件五轴加工变形预测技术研究[D]. 大连: 大连理工大学, 2014: 40-46. |
CAO Y J. Research on deformation prediction of five-axis machining thin-walled complex surface[D]. Dalian: Dalian University of Technology, 2014: 40-46 (in Chinese). | |
3 | 黄泽华, 李建勇, 樊文刚, 等. 复杂曲面薄壁叶片点铣加工弹性变形预测[J]. 西安交通大学学报, 2012, 46(5): 67-72. |
HUANG Z H, LI J Y, FAN W G, et al. Deformation prediction of thin-walled vane with complex surface in ball end milling[J]. Journal of Xi’an Jiaotong University, 2012, 46(5): 67-72 (in Chinese). | |
4 | 蔡永林, 林立, 黄泽华. 薄壁叶片加工误差分析与预测[J]. 北京交通大学学报, 2012, 36(1): 104-107. |
CAI Y L, LIN L, HUANG Z H. Error analysis and prediction of manufacturing for thin-walled blade[J]. Journal of Beijing Jiaotong University, 2012, 36(1): 104-107 (in Chinese). | |
5 | LI Z L, TUYSUZ O, ZHU L M, et al. Surface form error prediction in five-axis flank milling of thin-walled parts[J]. International Journal of Machine Tools and Manufacture, 2018, 128: 21-32. |
6 | HOU Y H, ZHANG D H, MEI J W, et al. Geometric modelling of thin-walled blade based on compensation method of machining error and design intent[J]. Journal of Manufacturing Processes, 2019, 44: 327-336 |
7 | ALTINTAS Y, TUYSUZ O, HABIBI M, et al. Virtual compensation of deflection errors in ball end milling of flexible blades[J]. CIRP Annals, 2018, 67: 365-368 |
8 | HUANG T, ZHANG X M, DING H. Tool orientation optimization for reduction of vibration and deformation in ball-end milling of thin-walled impeller blades[J]. Procedia CIRP, 2017, 58: 210-215 |
9 | WAN X J, ZHANG Y. A novel approach to fixture layout optimization on maximizing dynamic machinability[J]. International Journal of Machine Tools and Manufacture, 2013, 70: 32-44. |
10 | DOU J P, WANG X S, WANG L. Machining fixture layout optimization under dynamic conditions based on evolutionary techniques[J]. International Journal of Production Research, 2012, 50: 4294-4315. |
11 | 王仲奇, 李诚, 杨勃, 等. 基于花授粉算法的曲面薄壁件定位布局优化[J]. 中国机械工程, 2017, 28(18): 2231-2236. |
WANG Z Q, LI C, YANG B, et al. Fixture locating layout optimization of curved thin-walled parts based on FDA[J]. China Mechanical Engineering, 2017, 28(18): 2231-2236 (in Chinese). | |
12 | XING Y F. Fixture layout design of sheet metal parts based on global optimization algorithms[J]. Journal of Manufacturing Science and Engineering, 2017, 139(10): 101004. |
13 | LI X N, ZHAO Z H. Location layout design of aircraft parts assembly based on MSVR[J]. Chinese Journal of Aeronautics, 2020, 33(5): 1532-1540. |
14 | 秦国华, 赵旭亮, 吴竹溪. 基于神经网络与遗传算法的薄壁件多重装夹布局优化[J]. 机械工程学报, 2015, 51(1): 203-212. |
QIN G H, ZHAO X L, WU Z X. Optimization of multi-fixturing layout for thin-walled workpiece based on neural network and genetic algorithm[J]. Journal of Mechanical Engineering, 2015, 51(1): 203-212 (in Chinese). | |
15 | WANG Z Q, YANG B, KANG Y G, et al. Development of a prediction model based on RBF neural network for sheet metal fixture locating layout design and optimization[J]. Computational Intelligence and Neuroscience, 2016, 1687: 5265-5273. |
16 | 杨元, 王仲奇, 杨勃, 等. 基于SVR的航空薄壁件夹具布局优化预测模型[J]. 计算机集成制造系统, 2017, 23(6): 1302-1309. |
YANG Y, WANG Z Q, YANG B, et al. Prediction model for aeronautical thin-walled part fixture layout optimization based on SVR[J]. Computer Integrated Manufacturing Systems, 2017, 23(6): 1302-1309 (in Chinese). | |
17 | YANG B, WANG Z Q, YANG Y, et al. Optimum fixture locating layout for sheet metal part by integrating kriging with cuckoo search algorithm[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1-4): 327-340. |
18 | MA J J, ZHANG D H, WU B H, et al. Vibration suppression of thin-walled workpiece machining considering external damping properties based on magnetorheological fluids flexible fixture[J]. Chinese Journal of Aeronautics, 2016, 29(4): 1074-1083. |
19 | FEI J X, LIN B, YAN S, et al. Chatter mitigation using moving damper[J]. Journal of Sound & Vibration, 2017, 410: 49-63. |
20 | LIU C, SUN J, LI Y, et al. Investigation on the milling performance of titanium alloy thin-walled part with air jet assistance[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95: 2865-2874. |
21 | WU D, WANG H, PENG J, et al. Machining fixture for adaptive CNC machining process of near-net-shaped jet engine blade[J]. Chinese Journal of Aeronautics, 2019, 33(4): 1311-1328. |
22 | WANG H, HUANG L, YAO C, et al. Integrated analysis method of thin-walled turbine blade precise machining[J]. International Journal of Precision Engineering & Manufacturing, 2015, 16: 1011-1019. |
23 | ZENG S S, WAN X J, LI W L, et al. A novel approach to fixture design on suppressing machining vibration of flexible workpiece[J]. International Journal of Machine Tools & Manufacture, 2012, 58: 29-43. |
24 | 荆怀靖. 面向离线误差补偿的虚拟加工技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2005: 80-81. |
JING H J. Research on virtual machining technology for off-line error compensation[D]. Harbin: Harbin Institute of Technology, 2005: 80-81 (in Chinese). | |
25 | WU B H, ZHENG Z Y, WANG J, et al. Layout optimization of auxiliary support for deflection errors suppression in end milling of flexible blade[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(5-6): 1889-1905. |
26 | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 133-136. |
ZHOU Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016: 133-136 (in Chinese). |
/
〈 |
|
〉 |