[1] 李权,段卓毅,张彦军,等.民用飞机自然层流机翼研究进展[J]. 航空工程进展, 2013, 4(4): 399-406.
LI Q, DUAN Z Y, ZHANG Y J, et al. Progress in re-search on natural laminar wing for civil aircraft[J]. Ad-vances in Aeronautical Science and Engineering, 2013, 4(4):399-406.
[2] SAWYERS D. Progress in natural laminar flow wing design and wind tunnel testing[C]. Aeronautical Days,March 2011.
[3] 张馨元. A review of the attachment line instability for hybrid laminar flow control[J]. 民用飞机设计与研究. 2017,4, 42-51.
ZHANG X Y. A review of the attachment line instability for hybrid laminar flow control[J]. Civil Aircraft Design & Research, 2017,4, 42-51.
[4] 刘沛清,马利川,屈秋林,等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学报, 2013,31(4), 518-540.
LIU P Q, MA L C, QU Q L, et al. Numerical investiga-tion of the laminar separation bubble control by blow-ing/suction on an airfoil at low Re number[J]. Acta Aerodynamica Sinica, 2013,31(4), 518-540.
[5] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011,32(5):765-784.
ZHU Z Q, WU Z C, DING J C. Laminar flow Control technology and application[J]. Acta Aeronautica et As-tronautica Sinica, 2011, 32(5):765-784. (in Chinese).
[6] JOSLIN R D. Overview of laminar flow control[R]. NASA TP-208705, 1998.
[7] 王菲, 额日其太, 王强, 等. 基于升华法的后略翼混合层流控制研究[J]. 试验流体力学, 2010, 24(3): 54-58.
WANG F, ERIQIRTAI, WANG Q, et al. Investigation of HLFC on swept wing based on sublimation tech-nique[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 54-58.
[8] LI Y, LI D, YANG Y. On the passive laminar flow control technique of swept wing[J]. Chinese Journal of Theoretical and Applied Mechanics. 2011, 43(1): 45-54.
[9] CHERNYSHEV S L, GAMIRULLIN M D, KHOMICH V Y, et al. Electrogasdynamic laminar flow control on a swept wing[J]. Aerospace Science and Technology, 2016,59:155-161.
[10] LI F, CHOUDHARI M, CHANG CL, et al. Computa-tional modeling of roughness-based laminar flow con-trol on a subsonic swept wing[J]. AIAA Journal 2011,49(3):520-529.
[11] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal 2018,56 (7):2579-2593.
[12] XU J K, FU Z Y, BAI J Q, et al. Study of boundary layer transition on supercritical natural laminar flow wing at high Reynolds number through wind tunnel ex-periment[J]. Aerospace Science and Technology 2018,80:221-231
[13] 马晓永, 张彦军, 段卓毅, 等. 自然层流机翼气动外形优化研究[J]. 航空动力学报, 2015, 33(6): 812-817.
MA Y X, ZHANG Y J, DUAN Z Y, et al. Study of aerodynamic shape optimization for natural laminar wing[J]. Acta Aerodynamica Sinica, 2015, 33(6): 812-817.
[14] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft 2010, 47 (3): 783-795.
[15] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4): 122429.
ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 122429.
[16] 许朕铭, 韩忠华, 陈静, 等. 适用于中程民机的前掠自然层流机翼设计[J]. 西北工业大学学报, 2017, 35: 36-41.
XU Z N, HAN Z H, CHEN J, et al. Design research of forward swept natural laminar flow wing suitable for medium range civil[J]. Journal of Northwestern Poly-technical University, 2017, 35: 36-41.
[17] 王威, 王军, 杨伟刚, 等. 基于熵产方法的跨音速翼型减阻优化设计[J]. 华中科技大学学报 (自然科学版), 2018, 46(2): 1-6.
WANG W, WANG J, YANG W G, et al. Entropy gen-eration method for aerodynamic optimization design of transonic airfoil to drag minimization[J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition). 2018, 46(2): 1-6.
[18] MENTER F R, LANGTRY R B, LIKKI S R, et al., A correlation-based transition model using local variables-PartⅠ: Model formulation[J]. ASME journal of Turbomachinery, 2006,128(3):413-422.
[19] LANGTRY R B, MENTER F R, LIKKI S. R., et al., A correlation-based transition model using local variables-PartⅡ: Test cases and industrial applications[J]. ASME journal of Turbomachinery, 2006,128(3):423-434.
[20] QIAO L, BAI J Q, HUA J, et al. Combination of DES and DDES with a correlation based transition model[J]. Applied Mechanics and Materials. 2013, 444-445: 374-379.
[21] ZHOU L, GAO Z H, Du Y M. Flow-dependent DDES/γ?Reθt coupling model for the simulation of se-parated transitional flow[J]. Aerosp. Sci. Technol. 2019. 87: 389-403.
[22] 易淼荣, 赵慧勇, 乐嘉陵. 基于IDDES方法和γ-Reθ 转捩模型的粗糙颗粒诱导高速边界层强制转捩模拟[J]. 推进技术. 2020, 4: 778-790.
YI M R, ZHAO H Y, LE J L. Roughness Induced High Speed Boundary Layer Forced Transition Simulation Using γ-Reθ Transition Model Based on IDDES Me-thod[J]. Journal of Propulsion Technology. 2020, 4: 778-790.
[23] 易淼荣, 赵慧勇, 乐嘉陵, 等. 基于IDDES框架的γ-Reθ 转捩模型[J]. 航空学报. 2019, 40(8): 122726.
YI M R, ZHAO H Y, LE J L, et al. γ-Reθ transition model based on IDDES frame[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122726.
[24] MENTER F R. Two-equation eddy viscosity turbulence models for engineering applications[J]. AIAA Journal. 1994, 32(8): 1598-1605.
[25] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized com-putational fluid dynamics codes, AIAA Journal. 2009, 47(12): 2894-2906.