某层流验证机中央翼段高速巡航气动性能优化设计研究(层流专刊)

  • 唐松祥 ,
  • 李杰 ,
  • 张恒 ,
  • 牛笑天
展开
  • 西北工业大学

收稿日期: 2021-12-07

  修回日期: 2022-01-02

  网络出版日期: 2022-01-11

Research on aerodynamic performance optimization design of the middle wing section of a special laminar unmanned flight under high-speed cruise condition

  • TANG Song-Xiang ,
  • LI Jie ,
  • ZHANG Heng ,
  • NIU Xiao-Tian
Expand

Received date: 2021-12-07

  Revised date: 2022-01-02

  Online published: 2022-01-11

摘要

本文针对某特殊布局层流机翼验证机,开展高速巡航状态下中央翼段气动性能的优化设计研究。以转捩预测方法作为计算分析手段,对中央翼段翼型剖面进行改进设计以提升其升阻特性,并在此基础上对中央翼段前后位置进行调整,探究翼段位置变化后表面转捩位置的变化情况,为改善全机巡航力矩特性提供一定依据。文中通过原始层流翼型和某传统翼型计算和风洞试验结果的对比,验证了所采用数值计算方法和模型的适用性。针对原始层流翼型,通过提升其同一迎角下的升力系数来降低巡航迎角,增加其巡航状态表面层流区长度,使其拥有更好的层流特性。最后,针对中央翼段平移构型气动力系数开展计算研究,对比分析了不同平移位置中央翼段对层流验证机气动参数的影响,结果表明,不同平移构型在同样的计算状态下,中央翼段表面层流区长度变化不大,构型的变化对其层流特性的影响相对较小,有利于后续从中央翼段平移的角度对全机力矩特性进行优化。

本文引用格式

唐松祥 , 李杰 , 张恒 , 牛笑天 . 某层流验证机中央翼段高速巡航气动性能优化设计研究(层流专刊)[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2021.26766

Abstract

In this paper, the aerodynamic parameters of the middle wing of a special configuration laminar flow in high speed cruise were optimized. The characteristics of lift and drag were optimized by means of airfoil modification of middle wing section based on numerical simulation using the transition model. Besides, the effects of the middle wing position on transition were researched for providing a basis for improving the cruising torque characteristics of the flight. The applicability of the calculation model was illustrated by comparing the calculation and wind tunnel test results of the original laminar flow airfoil and one traditional airfoil. The original laminar airfoil was modified for improving the lift coefficient at the same attack angle and reducing the cruise attack angle, which enlarged the laminar region and improved the laminar characteristics at the high speed cruising condition. Finally, the aerodynamic calculations of different middle wing section translation configurations were conducted and the results showed that the laminar region changed little along with the wing section translated. And the characteristics of lift and drag had been turned out to be affected little by comparing the lift and drag coefficients of different translational configurations at the same attack angle, which was convenient for the further works on torque optimization by translating the middle wing section.

参考文献

[1] 李权,段卓毅,张彦军,等.民用飞机自然层流机翼研究进展[J]. 航空工程进展, 2013, 4(4): 399-406.
LI Q, DUAN Z Y, ZHANG Y J, et al. Progress in re-search on natural laminar wing for civil aircraft[J]. Ad-vances in Aeronautical Science and Engineering, 2013, 4(4):399-406.
[2] SAWYERS D. Progress in natural laminar flow wing design and wind tunnel testing[C]. Aeronautical Days,March 2011.
[3] 张馨元. A review of the attachment line instability for hybrid laminar flow control[J]. 民用飞机设计与研究. 2017,4, 42-51.
ZHANG X Y. A review of the attachment line instability for hybrid laminar flow control[J]. Civil Aircraft Design & Research, 2017,4, 42-51.
[4] 刘沛清,马利川,屈秋林,等. 低雷诺数下翼型层流分离泡及吹吸气控制数值研究[J]. 空气动力学报, 2013,31(4), 518-540.
LIU P Q, MA L C, QU Q L, et al. Numerical investiga-tion of the laminar separation bubble control by blow-ing/suction on an airfoil at low Re number[J]. Acta Aerodynamica Sinica, 2013,31(4), 518-540.
[5] 朱自强, 吴宗成, 丁举春. 层流流动控制技术及应用[J]. 航空学报, 2011,32(5):765-784.
ZHU Z Q, WU Z C, DING J C. Laminar flow Control technology and application[J]. Acta Aeronautica et As-tronautica Sinica, 2011, 32(5):765-784. (in Chinese).
[6] JOSLIN R D. Overview of laminar flow control[R]. NASA TP-208705, 1998.
[7] 王菲, 额日其太, 王强, 等. 基于升华法的后略翼混合层流控制研究[J]. 试验流体力学, 2010, 24(3): 54-58.
WANG F, ERIQIRTAI, WANG Q, et al. Investigation of HLFC on swept wing based on sublimation tech-nique[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 54-58.
[8] LI Y, LI D, YANG Y. On the passive laminar flow control technique of swept wing[J]. Chinese Journal of Theoretical and Applied Mechanics. 2011, 43(1): 45-54.
[9] CHERNYSHEV S L, GAMIRULLIN M D, KHOMICH V Y, et al. Electrogasdynamic laminar flow control on a swept wing[J]. Aerospace Science and Technology, 2016,59:155-161.
[10] LI F, CHOUDHARI M, CHANG CL, et al. Computa-tional modeling of roughness-based laminar flow con-trol on a subsonic swept wing[J]. AIAA Journal 2011,49(3):520-529.
[11] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal 2018,56 (7):2579-2593.
[12] XU J K, FU Z Y, BAI J Q, et al. Study of boundary layer transition on supercritical natural laminar flow wing at high Reynolds number through wind tunnel ex-periment[J]. Aerospace Science and Technology 2018,80:221-231
[13] 马晓永, 张彦军, 段卓毅, 等. 自然层流机翼气动外形优化研究[J]. 航空动力学报, 2015, 33(6): 812-817.
MA Y X, ZHANG Y J, DUAN Z Y, et al. Study of aerodynamic shape optimization for natural laminar wing[J]. Acta Aerodynamica Sinica, 2015, 33(6): 812-817.
[14] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft 2010, 47 (3): 783-795.
[15] 张彦军, 段卓毅, 雷武涛, 等. 超临界自然层流机翼设计及基于TSP技术的边界层转捩风洞试验[J]. 航空学报, 2019, 40(4): 122429.
ZHANG Y J, DUAN Z Y, LEI W T, et al. Design of supercritical natural laminar flow wing and its boundary layer transition wind tunnel test based on TSP technique[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 122429.
[16] 许朕铭, 韩忠华, 陈静, 等. 适用于中程民机的前掠自然层流机翼设计[J]. 西北工业大学学报, 2017, 35: 36-41.
XU Z N, HAN Z H, CHEN J, et al. Design research of forward swept natural laminar flow wing suitable for medium range civil[J]. Journal of Northwestern Poly-technical University, 2017, 35: 36-41.
[17] 王威, 王军, 杨伟刚, 等. 基于熵产方法的跨音速翼型减阻优化设计[J]. 华中科技大学学报 (自然科学版), 2018, 46(2): 1-6.
WANG W, WANG J, YANG W G, et al. Entropy gen-eration method for aerodynamic optimization design of transonic airfoil to drag minimization[J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition). 2018, 46(2): 1-6.
[18] MENTER F R, LANGTRY R B, LIKKI S R, et al., A correlation-based transition model using local variables-PartⅠ: Model formulation[J]. ASME journal of Turbomachinery, 2006,128(3):413-422.
[19] LANGTRY R B, MENTER F R, LIKKI S. R., et al., A correlation-based transition model using local variables-PartⅡ: Test cases and industrial applications[J]. ASME journal of Turbomachinery, 2006,128(3):423-434.
[20] QIAO L, BAI J Q, HUA J, et al. Combination of DES and DDES with a correlation based transition model[J]. Applied Mechanics and Materials. 2013, 444-445: 374-379.
[21] ZHOU L, GAO Z H, Du Y M. Flow-dependent DDES/γ?Reθt coupling model for the simulation of se-parated transitional flow[J]. Aerosp. Sci. Technol. 2019. 87: 389-403.
[22] 易淼荣, 赵慧勇, 乐嘉陵. 基于IDDES方法和γ-Reθ 转捩模型的粗糙颗粒诱导高速边界层强制转捩模拟[J]. 推进技术. 2020, 4: 778-790.
YI M R, ZHAO H Y, LE J L. Roughness Induced High Speed Boundary Layer Forced Transition Simulation Using γ-Reθ Transition Model Based on IDDES Me-thod[J]. Journal of Propulsion Technology. 2020, 4: 778-790.
[23] 易淼荣, 赵慧勇, 乐嘉陵, 等. 基于IDDES框架的γ-Reθ 转捩模型[J]. 航空学报. 2019, 40(8): 122726.
YI M R, ZHAO H Y, LE J L, et al. γ-Reθ transition model based on IDDES frame[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122726.
[24] MENTER F R. Two-equation eddy viscosity turbulence models for engineering applications[J]. AIAA Journal. 1994, 32(8): 1598-1605.
[25] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized com-putational fluid dynamics codes, AIAA Journal. 2009, 47(12): 2894-2906.
文章导航

/