论文

某层流验证机层流翼段气动改进设计

  • 魏自言 ,
  • 李杰 ,
  • 张恒 ,
  • 杨钊
展开
  • 西北工业大学 航空学院, 西安 710072

收稿日期: 2021-12-07

  修回日期: 2021-12-11

  网络出版日期: 2022-01-11

基金资助

国家自然科学基金(11972304)

Improved aerodynamic design of laminar wing section of laminar verifying aircraft

  • WEI Ziyan ,
  • LI Jie ,
  • ZHANG Heng ,
  • YANG Zhao
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2021-12-07

  Revised date: 2021-12-11

  Online published: 2022-01-11

Supported by

National Natural Science Foundation of China (11972304)

摘要

高亚声速层流飞机是现阶段飞机设计的一个重点研究方向,可以有效提高飞机气动性能,增加航程航时等关键指标,但层流翼型在低速条件下与传统翼型相比气动特性较差。利用改进的剪切层自适应IDDES方法针对某特殊设计的层流验证机层流翼段进行分析及改进,抑制其由于翼型本身及翼身结合处的三维效应在大攻角状态下所引起的流动分离,使得翼段在低速大迎角状态下获得相对较好的气动特性。结果表明通过对层流翼段的翼型前缘修型,可以在低速条件下显著抑制流动分离,使得层流翼段在低速性能提升的同时在高速条件下也能保证较好的气动特性。

本文引用格式

魏自言 , 李杰 , 张恒 , 杨钊 . 某层流验证机层流翼段气动改进设计[J]. 航空学报, 2022 , 43(11) : 526760 -526760 . DOI: 10.7527/S1000-6893.2021.26760

Abstract

High subsonic laminar aircraft design is a key research direction of aircraft. Laminar airfoils play an important role in improving key indicators such as aerodynamic performance, flight range, and flight time. However, their aerodynamic characteristics are worse than those of traditional airfoils at high angles of attack and low speed. A shear layer adaptive improved delay detached eddy simulation method is used to analyze and improve the laminar airfoil of the laminar verifying aircraft. The flow separation at the leading area caused by the three-dimensional effect of the airfoil itself and the wing/body junction at high angles of attack are suppressed and keep good aerodynamic characteristics at a low Mach and high angle of attack by the modified laminar airfoil. The results show that by modifying the leading edge of the laminar flow airfoil, the flow separation can be significantly suppressed at low speed, thus significantly improving the aerodynamic characteristics of the laminar flow airfoil while keeping good aerodynamic characteristics at high Mach number.

参考文献

[1] 张正国. NASA未来先进民用飞机与推进系统设计[J]. 国际航空, 2010(2):56-59. ZHANG Z G. Advanced civil aircraft and propulsion system design in NASA[J]. International Aviation, 2010(2):56-59(in Chinese).
[2] 张启鹏. 超临界自然层流翼型优化方法研究[D]. 南京:南京航空航天大学, 2018:1-3. ZHANG Q P. Optimization methods for supercritical natural laminar airfoils[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2018:1-3(in Chinese).
[3] SCHRAUF G. Status and perspectives of laminar flow[J]. The Aeronautical Journal, 2005, 109(1102):639-644.
[4] 朱自强, 鞠胜军, 吴宗成. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese).
[5] STURDZA P. An aerodynamic design method for supersonic natural laminar flow aircraft[D]. Stanford:Stanford University, 2003.
[6] LAUNDER B E, SHIMA N. Second-moment closure for the near-wall sublayer-Development and application[J]. AIAA Journal, 1989, 27(10):1319-1325.
[7] SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3):252-263.
[8] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR2014-218178[R]. Washington, D.C.:NASA, 2014.
[9] SPALART P R. Detached-eddy simulation[J]. Annual Review of Fluid Mechanics, 2009, 41:181-202.
[10] MENTER F R, KUNTZ M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[M]//The aerodynamics of heavy vehicles:Trucks, buses, and trains. Berlin, Heidelberg:Springer, 2004:339-352.
[11] XIAO Z X, LIU J, HUANG J B, et al. Numerical dissipation effects on massive separation around tandem cylinders[J]. AIAA Journal, 2012, 50(5):1119-1136.
[12] SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649.
[13] CHAUVET N, DECK S, JACQUIN L. Zonal detached eddy simulation of a controlled propulsive jet[J]. AIAA Journal, 2007, 45(10):2458-2473.
[14] SHUR M L, SPALART P R, STRELETS M K, et al. An enhanced version of DES with rapid transition from RANS to LES in separated flows[J]. Flow, Turbulence and Combustion, 2015, 95(4):709-737.
[15] GUSEVA E K, GARBARUK A V, STRELETS M K. Assessment of delayed DES and improved delayed DES combined with a shear-layer-adapted subgrid length-scale in separated flows[J]. Flow, Turbulence and Combustion, 2017, 98(2):481-502.
[16] ZHANG L, LI J, MOU Y F, et al. Numerical investigation of flow around a multi-element airfoil with hybrid RANS-LES approaches based on SST model[J]. Journal of Mechanics, 2017, 34(2):123-134.
[17] HUDDEVILLE R, PICCIN O, CASSOUDESALLE D. Opération décrochage-mesurement de frottement sur profiles AS 239 et A 240á la soufflerie F1 du CFM:RT-OA 19/5025[R]. 1987
[18] GLEYZES C. Operation decrochage-resultats de la 2eme campagne d'essais a F2-mesures de pression et velocimetrie laser:RT-DERAT[R]. Onera:Rt-Derat, 1989.
[19] MELLEN C P, FROHLICH J, RODI W. Lessons from LESFOIL project on large-eddy simulation of flow around an airfoil[J]. AIAA Journal, 2003, 41(4):573-581.
[20] ZHOU L, GAO Z H, DU Y M. Flow-dependent DDES/γ-Reθt coupling model for the simulation of separated transitional flow[J]. Aerospace Science and Technology, 2019, 87:389-403.
[21] SPALART P R. Young-person's guide to detached-eddy simulation grids[M]. Washington, D.C.:NASA, 2001
[22] SIMPSON R L. Junction flows[J]. Annual Review of Fluid Mechanics, 2001, 33:415-443.
[23] DANDOIS J. Improvement of corner flow prediction using the quadratic constitutive relation[J]. AIAA Journal, 2014, 52(12):2795-2806.
文章导航

/