XPNAV⁃1卫星聚焦型X射线脉冲星望远镜在轨稳定性分析
收稿日期: 2021-11-02
修回日期: 2021-11-30
录用日期: 2022-01-07
网络出版日期: 2022-01-11
基金资助
国家自然科学基金(42004004);国家重点基础研究发展计划(2020YFB0505801);安徽省高校省级自然科学研究项目(KJ2019A0787);安徽建筑大学校博士启动基金(2019QDZ14)
On⁃orbit stability analysis of FXPT on XPNAV⁃1
Received date: 2021-11-02
Revised date: 2021-11-30
Accepted date: 2022-01-07
Online published: 2022-01-11
Supported by
National Natural Science Foundation of China(42004004);National Key Basic Research Development Plan(2020YFB0505800);Natural Science Research Project of Colleges and Universities in Anhui Province(KJ2019A0787);Doctor Startup Fund of Anhui University of Architecture(2019QDZ14)
聚焦型X射线脉冲星望远镜(FXPT)是脉冲星导航试验(XPNAV-1)卫星的核心载荷,为中国首款在轨工作的聚焦型X射线望远镜,其在轨稳定性一直备受关注。首先,分析了XPNAV-1卫星对具有特征能谱辐射的超新星遗迹观测数据评估FXPT在轨性能的稳定性的可行性,发现拟合得到的FXPT能量响应参数存在较大误差,且缺乏长期超新星遗迹观测数据,难以支持望远镜在轨性能长期稳定性分析。其次,通过处理分析XPNAV-1卫星于2016年11月―2019年11月间1 455次4.1×106 s Crab脉冲星观测数据,发现FXPT在9.5 keV附近长期较稳定地存在大量的X射线光子,且其能量分布曲线近似高斯分布,排除了其来自脉冲星辐射可能性后,推断其来自于FXPT的超上阈信号,同时发现在7.5 keV能量处存在特征谱线辐射,判断其来自于望远镜镜片材料Ni的受激辐射Kα射线。继而提出了一种利用望远镜本征特征能谱和超上阈信号共同监测其在轨稳定性的方法,通过分析近4年XPNAV-1卫星对Crab脉冲星的观测能谱,发现FXPT于2017年10月后性能趋于稳定,该方法有效弥补XPNAV-1卫星无携带辐射标定装置的缺点。同时恢复出Crab脉冲星累积脉冲轮廓,且轮廓形状与RXTE卫星观测结果的相似度为98.6%,FXPT能够精准地获取Crab脉冲星的脉冲轮廓。
关键词: 聚焦型X射线脉冲星望远镜; 脉冲星导航试验(XPNAV-1)卫星; Crab脉冲星; 脉冲轮廓; 光子能量分布
周庆勇 , 闫林丽 , 李连升 , 冯来平 , 石永强 , 孙鹏飞 , 方柳 , 王龙 . XPNAV⁃1卫星聚焦型X射线脉冲星望远镜在轨稳定性分析[J]. 航空学报, 2023 , 44(3) : 526610 -526610 . DOI: 10.7527/S1000-6893.2021.26610
The Focusing X-ray Pulsar Telescope (FXPT) is the core payload of the first X-ray Pulsar-Based Navigation (XPNAV-1) Satellite. The FXPT is the first focused X-ray telescope in China, and its on-orbit stability has always been concerned. Firstly, the feasibility of using XPNAV-1 observations of supernova remnants with characteristic spectrum radiation to evaluate the on-orbit stability of the FXPT is analyzed. It is found that the fitted FXPT energy response parameters have large errors, and the lack of long-term supernova remnants observations makes it difficult to support the long-term stability analysis of the telescope’s on-orbit performance. Secondly, the 1 455 times observations with an exposure time of 4.1×106 s of the Crab Pulsar from the XPNAV-1 from November 2016 to November 2019 are processed and analyzed. It is found that there are a large number of X-ray photons near 9.5 keV in the FXPT for a long time, and their energy distribution curve approximates a Gaussian distribution. After excluding the possibility of radiation from the pulsar, it is inferred that it comes from the signal beyond the upper threshold of FXPT. It is also found that there exists characteristic spectral line radiation at the energy of 7.5 keV, which may come from the stimulated radiation of Ni, the telescope lens material. Then, a method is proposed to monitor the on-orbit stability of telescope by jointly using the its intrinsic characteristic spectrum and the signal beyond the upper threshold. An analysis of the spectrum of the Crab observed by XPNAV-1 Satellite in the past four years shows that the performance of FXPT tends to be stable after October 2017. This method effectively overcomes the shortcoming that XPNAV-1 is not equipped with a radiation calibration device. The integrated pulse profile of the Crab is also recovered and the similarity of this pulse profile with that from RXTE is 98.6%, demonstrating that the FXPT can accurately obtain the pulse profile of the Crab.
1 | SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation[D].Maryland: University of Maryland, 2005: 15-70. |
2 | 周庆勇. 脉冲星计时数据的处理理论与方法研究[D]. 郑州: 战略支援部队信息工程大学, 2020: 120-146. |
ZHOU Q Y. Research on theory and method of pulsar timing data[D]. Zhengzhou: Information Engineering University, 2020: 120-146 (in Chinese). | |
3 | WINTERNITZ L B, HASSOUNEH M A, MITCHELL J W, et al. SEXTANT X-ray pulsar navigation demonstration: Additional on-orbit results[C]∥ 2018 SpaceOps Conference. Reston: AIAA, 2018: 2538. |
4 | 周庆勇, 魏子卿, 闫林丽, 等. 面向综合定位导航授时系统的天地基脉冲星时间研究[J]. 物理学报, 2021, 70(13): 471-483. |
ZHOU Q Y, WEI Z Q, YAN L L, et al. Space/ground based pulsar timescale for comprehensive PNT system[J]. Acta Physica Sinica, 2021, 70(13): 471-483 (in Chinese). | |
5 | 帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报, 2019, 27(3): 281-287. |
SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 281-287 (in Chinese). | |
6 | 黄良伟, 帅平, 张新源, 等. 脉冲星导航试验卫星时间数据分析与脉冲轮廓恢复[J]. 中国空间科学技术, 2017, 37(3): 1-10. |
HUANG L W, SHUAI P, ZHANG X Y, et al. XPNAV-1 satellite timing data analysis and pulse profile recovery[J]. Chinese Space Science and Technology, 2017, 37(3): 1-10 (in Chinese). | |
7 | 李连升, 梅志武, 吕政欣, 等. 掠入射聚焦型X射线脉冲星望远镜及在轨数据分析[J]. 兵器装备工程学报, 2017, 38(12): 175-179. |
LI L S, MEI Z W, LV Z X, et al. Grazing incidence focusing X-ray pulsar telescope and analysis of in-orbit observation data[J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 175-179 (in Chinese). | |
8 | 帅平,张新源,黄良伟, 等. XPNAV-1卫星科学观测数据分析[J]. 空间控制技术与应用, 2017, 43(3): 1-6. |
SHUAI P, ZANG X Y, HUANG L W, et al. X-ray pulsar navigation test satellite science data analysis[J]. Aerospace Control and Application, 2017, 43(3): 1-6 (in Chinese). | |
9 | 张大鹏, 王奕迪, 姜坤, 等. XPNAV-1卫星实测数据处理与分析[J]. 宇航学报, 2018, 39(4): 411-417. |
ZHANG D P, WANG Y D, JIANG K, et al. Measured data processing and analysis for XPNAV-1[J]. Journal of Astronautics, 2018, 39(4): 411-417 (in Chinese). | |
10 | HUANG L W, SHUAI P, ZHANG X Y, et al. Pulsar-based navigation results: Data processing of the X-ray pulsar navigation-I telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5(1): 018003. |
11 | ZHANG X Y, SHUAI P, HUANG L W, et al. X-ray observation of the 2017 November glitch in the crab pulsar[J]. The Astrophysical Journal Letters, 2018, 866(2): 82. |
12 | 左富昌, 梅志武, 邓楼楼, 等. 多层嵌套掠入射光学系统研制及在轨性能评价[J]. 物理学报, 2020, 69(3): 63-71. |
ZUO F C, MEI Z W, DENG L L, et al. Development and in-orbit performance evaluation of multi-layered nested grazing incidence optics[J]. Acta Physica Sinica, 2020, 69(3): 63-71 (in Chinese). | |
13 | RAMSEY B D, ELSNER R F, ENGELHAUPT D, et al. The development of hard X-ray optics at MSFC[C]∥ Optical Science and Technology, SPIE’s 48th Annual Meeting. Proc SPIE 5168, Optics for EUV, X-Ray, and Gamma-Ray Astronomy, 2004: 129-135. |
14 | 周庆勇, 魏子卿, 姜坤, 等. 面向脉冲星导航的聚焦型X射线探测器测试标定方法研究[J]. 光子学报, 2020, 49(6): 27-39. |
ZHOU Q Y, WEI Z Q, JIANG K, et al. Research on the test and calibration method of a focusing X-ray detector for pulsar navigation[J]. Acta Photonica Sinica, 2020, 49(6): 27-39 (in Chinese). | |
15 | 赵宝升, 苏桐, 盛立志. 空间X射线通信概论[M]. 北京: 科学出版社, 2016: 108-175. |
ZHAO B S, SU T, SHENG L Z. Introduction to space X-ray communication[M]. Beijing: Science Press, 2016: 108-175 (in Chinese). | |
16 | 丁洪林. 核辐射探测器[M]. 哈尔滨: 哈尔滨工程大学出版社, 2010: 1-45. |
DING H L. Nuclear radiation detector[M]. Harbin: Harbin Engineering University Press, 2010: 1-45 (in Chinese). | |
17 | 张双南. 我国空间天文发展的现状和展望[J]. 中国科学: 物理学 力学 天文学, 2012, 42(12): 1308-1320. |
ZHANG S N. Current status and future outlook of the development of China’s space astronomy[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2012, 42(12): 1308-1320 (in Chinese). | |
18 | 李连升, 梅志武, 邓楼楼, 等. 掠入射聚焦型X射线脉冲星望远镜装配误差分析与在轨验证[J]. 机械工程学报, 2018, 54(11): 49-60. |
LI L S, MEI Z W, DENG L L, et al. Assembly error analysis and in-orbit verification of grazing incidence focusing X-ray pulsar telescope[J]. Journal of Mechanical Engineering, 2018, 54(11): 49-60 (in Chinese). | |
19 | 李连升, 邓楼楼, 梅志武, 等. 聚焦型X射线脉冲星望远镜Pareto多目标优化与多场耦合分析[J]. 机械工程学报, 2018, 54(23): 174-184. |
LI L S, DENG L L, MEI Z W, et al. Pareto-based multi-objective optimization of focusing X-ray pulsar telescope and multi-physics coupling analysis[J]. Journal of Mechanical Engineering, 2018, 54(23): 174-184 (in Chinese). | |
20 | SHI Y Q, MEI Z W, HE Y, et al. Ground calibration and in-orbit performance of the time-resolved soft X-ray spectrometer on board XPNAV-1[J]. Proceedings of SPIE, 2020, 6(3): 034006. |
21 | 石永强, 席同鑫, 辛优美, 等. 掠入射聚焦型脉冲星探测器的能量响应标定[J]. 空间控制技术与应用, 2018, 44(4): 34-39. |
SHI Y Q, XI T X, XIN Y M, et al. The energy response calibration of FXPT[J]. Aerospace Control and Application, 2018, 44(4): 34-39 (in Chinese). | |
22 | KIRSCH M G F, BRIEL U G, BURROWS D, et al. Crab: The standard X-ray candle with all (modern) X-ray satellites[C]∥ Optics and Photonics 2005. Proc SPIE 5898, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIV, 2005: 22-33. |
23 | LI X B, LI X F, TAN Y, et al. In-flight calibration of the insight-hard X-ray modulation telescope[J]. Journal of High Energy Astrophysics, 2020, 27: 64-76. |
24 | 周庆勇, 魏子卿, 姜坤, 等. 一种聚焦型X射线探测器在轨性能标定方法[J]. 物理学报, 2018, 67(5): 050701. |
ZHOU Q Y, WEI Z Q, JIANG K, et al. A method of calibrating effective area of focusing X-ray detector by using normal spectrum of Crab pulsar[J]. Acta Physica Sinica, 2018, 67(5): 050701 (in Chinese). | |
25 | 周庆勇, 姬剑锋, 任红飞. 非等间隔计时数据的X射线脉冲星周期快速搜索算法[J]. 物理学报, 2013, 62(1): 019701. |
ZHOU Q Y, JI J F, REN H F. Quick search algorithm of X-ray pulsar period based on unevenly spaced timing data[J]. Acta Physica Sinica, 2013, 62(1): 019701 (in Chinese). | |
26 | LYNE A G, PRITCHARD R S, GRAHAM SMITH F. 23 years of Crab pulsar rotational history[J]. Monthly Notices of the Royal Astronomical Society, 1993, 265(4): 1003-1012. |
/
〈 |
|
〉 |