综述

亚跨声速边界层增长因子输运模式研究进展

  • 徐家宽 ,
  • 王玉轩 ,
  • 张扬 ,
  • 乔磊 ,
  • 刘建新 ,
  • 白俊强
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 西安交通大学 机械强度与振动国家重点实验室, 西安 710049;
    3. 天津大学 机械工程学院 高速空气动力学研究室, 天津 300072

收稿日期: 2021-12-02

  修回日期: 2021-12-11

  网络出版日期: 2022-01-04

基金资助

国家自然科学基金(12102361);中央高校基本科研业务费(G2021KY05101)

Progress in amplification factor transport models in subsonic and transonic boundary layers

  • XU Jiakuan ,
  • WANG Yuxuan ,
  • ZHANG Yang ,
  • QIAO Lei ,
  • LIU Jianxin ,
  • BAI Junqiang
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China;
    3. High Speed Aerodynamics Research Laboratory, School of Mechanical Engineering, Tianjin University, Tianjin 300072, China

Received date: 2021-12-02

  Revised date: 2021-12-11

  Online published: 2022-01-04

Supported by

National Natural Science Foundation of China (12102361); the Fundamental Research Funds for the Central Universities(G2021KY05101)

摘要

基于线性稳定性理论的eN方法是航空航天飞行器绕流转捩预测技术中可信度较高的一种。传统的线性稳定性理论的求解过程较为复杂,在复杂气动外形表面的推广阻力较大。随着近年来当地化转捩模式的快速发展,将传统线性稳定性理论的分析流程模式化,即将线性稳定性理论分析转化为一个CFD问题,成为研究热点。其核心思想是对层流相似性解进行大量的线性稳定性分析,然后获得扰动增长因子包络线与层流基本流特征变量之间的函数映射关系,再利用输运方程的积分特性构造对应扰动增长因子的输运模式。随后对模式中出现的非当地变量进行当地化求解,最终与湍流模式耦合形成新的转捩-湍流输运模式。经过验证,当前发展的流向NTS输运模式与横流NCF输运模式在广泛的算例验证中取得了较高的预测精度,但还存在需要改进和完善的地方。

本文引用格式

徐家宽 , 王玉轩 , 张扬 , 乔磊 , 刘建新 , 白俊强 . 亚跨声速边界层增长因子输运模式研究进展[J]. 航空学报, 2022 , 43(11) : 526734 -526734 . DOI: 10.7527/S1000-6893.2021.26734

Abstract

Based on the linear stability theory, the eN method is one of the most reliable transition prediction techniques for aerospace vehicles. However, the complexity of traditional linear stability theory increases the difficulty in its application to the flows over complex aerodynamic configurations. With the rapid development of the local-variable-based transition model in recent years, modeling the process of the traditional linear stability theory, that is, transforming the linear stability theory analysis into a CFD problem, has become a research hotspot. The key idea is to analyze the linear stability of a large number of similarity solutions of laminar boundary layers, followed by obtaining the relationship between the envelope of the amplification factor and the characteristic variables of the mean laminar flow. After that, the amplification factor transport model using the integral characteristics of the transport equation is constructed. The non-local variables in the model are solved locally and the new transport equations are coupled with the turbulence model to form a new transition-turbulence transport model. Verifications show that the current developed streamwise NTS transport model and crossflow NCF transport model have achieved high prediction accuracy in a wide range of numerical examples, despite improvements yet to be made in some aspects.

参考文献

[1] SMITH A, GAMBERONI N. Transition, pressure gradient and stability theory:ES-26388[R]. Long Beach:Douglas Aircraft Company, 1956.
[2] VAN INGEN J. A suggested semi-empirical method for the calculation of the boundary layer transition region[R]. Delft:Delft University of Technology, 1956.
[3] MALIK M R. COSAL:A black-box compressible stability analysis code for transition prediction in three-dimensional boundary layers:NASA-CR-155952[R]. Washington, D.C.:NASA, 1982.
[4] ARNAL D, CASALIS G. Laminar-turbulent transition prediction in three-dimensional flows[J]. Progress in Aerospace Sciences, 2000, 36(2):173-191.
[5] CEBECI T. Stability and transition:Theory and application[M]. Berlin, Heidelberg:Springer, 2004.
[6] 苏彩虹. 高超音速圆锥边界层的转捩预测及e-N方法的改进[D]. 天津:天津大学, 2008. SU C H. The transition prediction of boundary layers on a hypersonic cone and the improvement of the e-N method[D]. Tianjin:Tianjin University, 2008(in Chinese).
[7] ZHAO L, YU G T, LUO J S. Extension of eN method to general three-dimensional boundary layers[J]. Applied Mathematics and Mechanics, 2017, 38(7):1007-1018.
[8] SARIC W S, REED H L, WHITE E B. Stability and transition of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003, 35(1):413-440.
[9] OBREMSKI H, MORKOVIN M, LANDAHL M, et al. A portfolio of stability characteristics of incompressible boundary layers:AGARD-No.134[R]. Brussels:NATO, 1969.
[10] KLEBANOFF P S, TIDSTROM K D, SARGENT L M. The three-dimensional nature of boundary-layer instability[J]. Journal of Fluid Mechanics, 1962, 12(1):1-34.
[11] DEYHLE H, HOHLER G, BIPPES H. Experimental investigation of instability wave propagation in a three-dimensional boundary-layer flow[J]. AIAA Journal, 1993, 31(4):637-645.
[12] RADEZTSKY R H, REIBERT M S, SARIC W S. Development of stationary crossflow vortices on a swept wing:AIAA-1994-2373[R]. Reston:AIAA, 1994.
[13] WASSERMANN P, KLOKER M. Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer[J]. Journal of Fluid Mechanics, 2002, 456:49-84.
[14] 徐国亮, 符松. 可压缩横流失稳及其控制[J]. 力学进展, 2012, 42(3):262-273. XU G L, FU S. The instability and control of compressible cross flows[J]. Advances in Mechanics, 2012, 42(3):262-273(in Chinese).
[15] RADEZTSKY JR R H, REIBERT M, SARIC W, et al. Effect of micron-sized roughness on transition in swept-wing flows:AIAA-1993-0076[R]. Reston:AIAA, 1993.
[16] MALIK M. Boundary-layer transition prediction toolkit:AIAA-1997-1904[R]. Reston:AIAA, 1997.
[17] CHANG C L. Langley stability and transition analysis code (LASTRAC) version 1.2 user manual:NASA TM-2004-2133233[R]. Washington, D.C.:NASA, 2004.
[18] BOIKO A V, NECHEPURENKO Y M, ZHUCHKOV R N, et al. Laminar-turbulent transition prediction module for LOGOS package[J]. Thermophysics and Aeromechanics, 2014, 21(2):191-210.
[19] PINNA F. VESTA toolkit:A software to compute transition and stability of boundary layers:AIAA-2013-2616[R]. Reston:AIAA, 2013.
[20] 黄章峰, 逯学志, 于高通. 机翼边界层的横流稳定性分析和转捩预测[J]. 空气动力学学报, 2014, 32(1):14-20. HUANG Z F, LU X Z, YU G T. Cross-flow instability analysis and transition prediction of airfoil boundary layer[J]. Acta Aerodynamica Sinica, 2014, 32(1):14-20(in Chinese).
[21] 宋文萍, 吴猛猛, 朱震, 等. 面向层流减阻设计的转捩预测方法研究[J]. 空气动力学学报, 2018, 36(2):213-228. SONG W P, WU M M, ZHU Z, et al. Transition prediction methods towards significant drag reduction via laminar flow technology[J]. Acta Aerodynamica Sinica, 2018, 36(2):213-228(in Chinese).
[22] SHI Y Y, GROSS R, MADER C A, et al. Transition prediction in a RANS solver based on linear stability theory for complex three-dimensional configurations:AIAA-2018-0819[R]. Reston:AIAA, 2018.
[23] PERRAUD J, ARNAL D, CASALIS G, et al. Automatic transition predictions using simplified methods[J]. AIAA Journal, 2009, 47(11):2676-2684.
[24] BÉGOU G, DENIAU H, VERMEERSCH O, et al. Database approach for laminar-turbulent transition prediction:Navier-Stokes compatible reformulation[J]. AIAA Journal, 2017, 55(11):3648-3660.
[25] KRUMBEIN A. eN transition prediction for 3D wing configurations using database methods and a local, linear stability code[J]. Aerospace Science and Technology, 2008, 12(8):592-598.
[26] ELIASSON P, HANIFI A, PENG S H. Influence of transition on high-lift prediction with the NASA trap wing model:AIAA-2011-3009[R]. Reston:AIAA, 2011.
[27] DRELA M, GILES M B. Viscous-inviscid analysis of transonic and low Reynolds number airfoils[J]. AIAA Journal, 1987, 25(10):1347-1355.
[28] CODER J, MAUGHMER M D. A CFD-compatible transition model using an amplification factor transport equation:AIAA-2013-0253[R]. Reston:AIAA, 2013.
[29] CODER J G, MAUGHMER M D. Computational fluid dynamics compatible transition modeling using an amplification factor transport equation[J]. AIAA Journal, 2014, 52(11):2506-2512.
[30] CODER J G, MAUGHMER M D. Application of the amplification factor transport transition model to the shear stress transport model:AIAA-2015-0588[R]. Reston:AIAA, 2015.
[31] CODER J G. Enhancement of the amplification factor transport transition modeling framework:AIAA-2017-1709[R]. Reston:AIAA, 2017.
[32] CODER J G. Further development of the amplification factor transport transition model for aerodynamic flows:AIAA-2019-0039[R]. Reston:AIAA, 2019.
[33] XU J K, BAI J Q, ZHANG Y, et al. Transition study of 3D aerodynamic configures using improved transport equations modeling[J]. Chinese Journal of Aeronautics, 2016, 29(4):874-881.
[34] XU J K, HAN X, QIAO L, et al. Fully local amplification factor transport equation for stationary crossflow instabilities[J]. AIAA Journal, 2019, 57(7):2682-2693.
[35] XU J K, QIAO L, BAI J Q. Improved local amplification factor transport equation for stationary crossflow instability in subsonic and transonic flows[J]. Chinese Journal of Aeronautics, 2020, 33(12):3073-3081.
[36] 王玉轩, 徐家宽, 张扬, 等. 横流驻波增长因子模式在跨声速边界层的应用[J/OL]. 空气动力学学报, (2021-12-21)[2021-12-31]. https://kns.cnki.net/kcms/detail/51.1192.TK.20211220.1139.010.html. WANG Y X, XU J K, ZHANG Y, et al. Applications of transition model based on amplification factor of stationary crossflow waves in transonic boundary layers[J/OL]. Acta Aerodynamica Sinica, (2021-12-21)[2021-12-31]. https://kns.cnki.net/kcms/detail/51.1192.TK.20211220.1139.010.html (in Chinese).
[37] XU J K, QIAO L, BAI J Q. A CFD-compatible amplification factor transport equation for oblique Tollmien-Schlichting waves in supersonic boundary layers[J]. International Journal of Aerospace Engineering, 2020, 2020:3945463.
[38] XU J K. Linear amplification factor transport equation for stationary crossflow instabilities in supersonic boundary layers[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2021, 235(6):703-717.
[39] XU J K, BAI J Q, QIAO L, et al. Fully local formulation of a transition closure model for transitional flow simulations[J]. AIAA Journal, 2016, 54(10):3015-3023.
[40] MACK L. Transition prediction and linear stability theory[R]. Paris:AGARD, 1977.
[41] 史亚云, 白俊强, 华俊, 等. 基于放大因子与Spalart-Allmaras湍流模型的转捩预测[J]. 航空动力学报, 2015, 30(7):1670-1677. SHI Y Y, BAI J Q, HUA J, et al. Transition prediction based on amplification factor and Spalart-Allmaras turbulence model[J]. Journal of Aerospace Power, 2015, 30(7):1670-1677(in Chinese).
[42] 徐家宽, 白俊强. 基于边界层相似性解的放大因子输运模型[J]. 航空学报, 2016, 37(4):1103-1113. XU J K, BAI J Q. Amplification factor transport model based on boundary layer similarity solution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1103-1113(in Chinese).
[43] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[44] MENTER F R, SMIRNOV P E, LIU T, et al. A one-equation local correlation-based transition model[J]. Flow, Turbulence and Combustion, 2015, 95(4):583-619.
[45] LANGTRY R. Extending the γ-Reθt correlation based transition model for crossflow effects:AIAA-2015-2474[R]. Reston:AIAA, 2015.
[46] VENKATACHARI B S, PAREDES P, DERLAGA J M, et al. Assessment of transition modeling capability in OVERFLOW with emphasis on swept-wing configurations:AIAA-2020-1034[R]. Reston:AIAA, 2020.
[47] PAREDES P, VENKATACHARI B, CHOUDHARI M M, et al. Toward a practical method for hypersonic transition prediction based on stability correlations[J]. AIAA Journal, 2020, 58(10):4475-4484.
[48] VENKATACHARI B S, PAREDES P, DERLAGA J M, et al. Assessment of RANS-based transition models based on experimental data of the common research model with natural laminar flow:AIAA-2021-1430[R]. Reston:AIAA, 2021.
[49] MVLLER C, HERBST F. Modelling of crossflow induced transition based on local variables[C]//6th European Conference on Computational Fluid Dynamics (ECFD VI), 2014:6358-6369.
[50] GRABE C, NIE S Y, KRUMBEIN A. Transition transport modeling for the prediction of crossflow transition:AIAA-2016-3572[R]. Reston:AIAA, 2016.
[51] XU J K, BAI J Q, FU Z Y, et al. Parallel compatible transition closure model for high-speed transitional flow[J]. AIAA Journal, 2017, 55(9):3040-3050.
[52] QIAO L, XU J K, BAI J Q, et al. Fully local transition closure model for hypersonic boundary layers considering crossflow effects[J]. AIAA Journal, 2021, 59(5):1692-1706.
[53] CROUCH J D, NG L L. Variable N-factor method for transition prediction in three-dimensional boundary layers[J]. AIAA Journal, 2000, 38(2):211-216.
文章导航

/