材料工程与机械制造

基于半跨模式波的铝合金板底面缺陷TOFD检测

  • 金士杰 ,
  • 王志诚 ,
  • 田鑫 ,
  • 孙旭 ,
  • 林莉
展开
  • 大连理工大学 无损检测研究所,大连  116085
.E-mail: linli@dlut.edu.cn

收稿日期: 2021-11-17

  修回日期: 2021-12-10

  录用日期: 2021-12-24

  网络出版日期: 2022-01-04

基金资助

国家重点研发项目(2019YFA0709003);国家自然科学基金(51905079);辽宁省“兴辽英才计划”(XLYC1902082)

TOFD detection of bottom defects in aluminum alloy plate by half-skip mode wave

  • Shijie JIN ,
  • Zhicheng WANG ,
  • Xin TIAN ,
  • Xu SUN ,
  • Li LIN
Expand
  • NDT & E Laboratory,Dalian University of Technology,Dalian  116085,China
E-mail: linli@dlut.edu.cn

Received date: 2021-11-17

  Revised date: 2021-12-10

  Accepted date: 2021-12-24

  Online published: 2022-01-04

Supported by

National Key Research and Development Program of China(2019YFA0709003);National Natural Science Foundation of China(51905079);Liaoning “Revitalization Talents Program”(XLYC1902082)

摘要

采用超声衍射时差法(TOFD)检测铝合金板底面缺陷时,受直通波脉冲宽度影响存在近表面盲区。提出了TOFD半跨模式波法进行盲区抑制,利用一次底面反射波在缺陷端点处衍射波的特征及其在B扫查图像中的对称性推导底面缺陷定深公式。仿真和实验结果表明,对于厚度为7.0 mm的铝合金板,在探头中心距为40 mm、中心频率为10 MHz的检测条件下TOFD半跨模式波法能将近表面盲区抑制64%以上,且深度不小于2.0 mm底面缺陷的定位误差不超过6.32%。与模式转换波及TOFD⁃W波相比,半跨模式波不会与底波混叠且离直通波较近,在铝合金板底面缺陷检测中适用性较强。

本文引用格式

金士杰 , 王志诚 , 田鑫 , 孙旭 , 林莉 . 基于半跨模式波的铝合金板底面缺陷TOFD检测[J]. 航空学报, 2023 , 44(4) : 426674 -426674 . DOI: 10.7527/S1000-6893.2021.26674

Abstract

When Time-of-Flight Diffraction (TOFD) technique is used to detect the bottom defects in the aluminum alloy plate, there is a near-surface dead zone under the effect of the pulse duration of lateral wave. In this paper, a TOFD half-skip mode wave method is proposed to reduce the dead zone. The characteristics of the diffracted wave of the first back-wall reflected wave at the defect tip and its symmetry in B-scan image are employed to derive the depth determination formula of bottom defect. Simulation and experiment results show that with the proposed method, the range of the near-surface dead zone is reduced by more than 64%, and the positioning errors of the defects with depth of no less than 2.0 mm are within 6.32% for the aluminum alloy plate with a thickness of 7.0 mm by using the probes with 10 MHz center frequency and 40 mm probe center spacing. Compared to the mode-converted wave and the TOFD-W wave, the half-skip mode wave is decoupled with the back-wall wave and is close to the lateral wave, presenting stronger applicability in detecting the bottom defect in aluminum alloy plate.

参考文献

1 邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报201929(9): 2115-2141.
  DENG Y L, ZHANG X M. Development of aluminium and aluminium alloy[J]. The Chinese Journal of Nonferrous Metals201929(9): 2115-2141 (in Chinese).
2 冯吉才. 异种材料连接研究进展[J]. 航空学报202243(2): 626413.
  FENG J C. Research progress on dissimilar materials joining[J]. Acta Aeronautica et Astronautica Sinica202243(2): 626413 (in Chinese).
3 ZHAO K, LIU J H, YU M, et al. SCC evaluation of a 2297 Al-Li alloy rolled plate using the slow-strain rate technique[J]. Chinese Journal of Aeronautics201932(11): 2516-2525.
4 王茂松, 杜宇雷. 增材制造钛铝合金研究进展[J]. 航空学报202142(7): 625263.
  WANG M S, DU Y L. Research progress of additive manufacturing of TiAl alloys[J]. Acta Aeronautica et Astronautica Sinica202142(7): 625263 (in Chinese).
5 张辰威, 张博明. 复合材料贮箱在航天飞行器低温推进系统上的应用与关键技术[J]. 航空学报201435(10): 2747-2755.
  ZHANG C W, ZHANG B M. Application and key technology of composites tank in space cryogenic propulsion system[J]. Acta Aeronautica et Astronautica Sinica201435(10): 2747-2755 (in Chinese).
6 SANTOS L H, SOUSA W P T, DE DAFé S S F, et al. Microstructural characterization and mechanical behavior analysis of 7075-T6 aluminum subjected to simulated lightning strikes[J]. Chinese Journal of Aeronautics202134(12): 39-50.
7 高志刚, 何宇廷, 马斌麟, 等. 机翼用铝合金材料原始疲劳质量对比[J]. 航空学报202142(5): 524375.
  GAO Z G, HE Y T, MA B L, et al. Initial fatigue quality comparison of aluminum alloy materials for aircraft wings[J]. Acta Aeronautica et Astronautica Sinica202142(5): 524375 (in Chinese).
8 ZHANG F Z. Principles and methods for determining calendar life and corrosion tolerance of mechanical parts[J]. Chinese Journal of Aeronautics202134(12): 1-16.
9 穆志韬, 陈定海, 朱做涛, 等. 腐蚀条件下LD2航空铝合金裂纹扩展规律研究[J]. 航空学报201334(3): 574-579.
  MU Z T, CHEN D H, ZHU Z T, et al. Fatigue crack growth behavior of aerospace aluminum alloy LD2 under corrosion[J]. Acta Aeronautica et Astronautica Sinica201334(3): 574-579 (in Chinese).
10 李华斌, 张宏, 杨静. 铝合金薄板CMT焊缝的超声波检测[J]. 物理测试201937(3): 7-10.
  LI H B, ZHANG H, YANG J. Ultrasonic testing of the CMT welding seam on aluminum alloy sheet[J]. Physics Examination and Testing201937(3): 7-10 (in Chinese).
11 CHABOT A, LAROCHE N, CARCREFF E, et al. Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing[J]. Journal of Intelligent Manufacturing202031(5): 1191-1201.
12 CHEN X Y, CHEN Z. Research on the ultrasonic testing of defect for LY12 aluminum alloy based on transmission wave in lamb wave[J]. Journal of Vibroengineering201719(3): 1771-1781.
13 LI W K, CUI H T, WEN W D, et al. In situ nonlinear ultrasonic for very high cycle fatigue damage characterization of a cast aluminum alloy[J]. Materials Science and Engineering: A2015645: 248-254.
14 LU C, WANG Q, LIU F N. Ultrasonic TOFD in the application of thick wall tube welding seam detection pre-research[J]. Advanced Materials Research2014912-914: 12-17.
15 孙旭, 金士杰, 张东辉, 等. 基于自回归谱外推方法的TOFD检测盲区抑制[J]. 机械工程学报201854(22): 15-20.
  SUN X, JIN S J, ZHANG D H, et al. Suppression of dead zone in TOFD with autoregressive spectral extrapolation[J]. Journal of Mechanical Engineering201854(22): 15-20 (in Chinese).
16 程茂, 仇飞, 黄文大, 等. 铝制承压设备焊缝的TOFD检测[J]. 无损检测202042(11): 16-22.
  CHENG M, QIU F, HUANG W D, et al. TOFD testing of weld of aluminum pressure equipment[J]. Nondestructive Testing202042(11): 16-22 (in Chinese).
17 强天鹏, 肖雄, 李智军, 等. TOFD技术的检测盲区计算和分析[J]. 无损检测200830(10): 738-740, 762.
  QIANG T P, XIAO X, LI Z J, et al. Calculation for the blind zone of TOFD testing technology and its characteristic analysis[J]. Nondestructive Testing200830(10): 738-740, 762 (in Chinese).
18 SUN X, LIN L, MA Z Y, et al. Enhancement of time resolution in ultrasonic time-of-flight diffraction technique with frequency-domain sparsity-decomposability inversion (FDSDI) method[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control202168(10): 3204-3215.
19 YEH F W T, LUKOMSKI T, HAAG J, et al. An alternative ultrasonic time of flight diffraction (TOFD) method[J]. NDT & E International2018100: 74-83.
20 JIN S J, SUN X, MA T T, et al. Quantitative detection of shallow subsurface defects by using mode-converted waves in time-of-flight diffraction technique[J]. Journal of Nondestructive Evaluation202039(2): 33.
21 丁宁, 金士杰, 张东辉, 等. 基于波型转换的TOFD近表面盲区抑制研究[J]. 机械工程学报201753(16): 120-124.
  DING N, JIN S J, ZHANG D H, et al. Research on near surface dead zone reduction of TOFD based on mode-converted theory[J]. Journal of Mechanical Engineering201753(16): 120-124 (in Chinese).
22 CHI D Z, GANG T. Shallow buried defect testing method based on ultrasonic TOFD[J]. Journal of Nondestructive Evaluation201332(2): 164-171.
23 JIN S J, SUN X, LUO Z B, et al. Quantitative detection of shallow subsurface cracks in pipeline with time-of-flight diffraction technique[J]. NDT & E International2021118: 102397.
24 卢超, 王鑫, 陈振华. 近表面缺陷的超声TOFDR和TOFDW检测[J]. 失效分析与预防20127(3): 153-157.
  LU C, WANG X, CHEN Z H. Ultrasonic TOFDR and TOFDW for near surface defect detection[J]. Failure Analysis and Prevention20127(3): 153-157 (in Chinese).
25 金士杰, 刘晨飞, 史思琪, 等. 基于全模式全聚焦方法的裂纹超声成像定量检测[J]. 仪器仪表学报202142(1): 183-190.
  JIN S J, LIU C F, SHI S Q, et al. Quantitative crack detection by ultrasonic imaging with the full-mode total focusing method[J]. Chinese Journal of Scientific Instrument202142(1): 183-190 (in Chinese).
文章导航

/