基于半跨模式波的铝合金板底面缺陷TOFD检测
收稿日期: 2021-11-17
修回日期: 2021-12-10
录用日期: 2021-12-24
网络出版日期: 2022-01-04
基金资助
国家重点研发项目(2019YFA0709003);国家自然科学基金(51905079);辽宁省“兴辽英才计划”(XLYC1902082)
TOFD detection of bottom defects in aluminum alloy plate by half-skip mode wave
Received date: 2021-11-17
Revised date: 2021-12-10
Accepted date: 2021-12-24
Online published: 2022-01-04
Supported by
National Key Research and Development Program of China(2019YFA0709003);National Natural Science Foundation of China(51905079);Liaoning “Revitalization Talents Program”(XLYC1902082)
采用超声衍射时差法(TOFD)检测铝合金板底面缺陷时,受直通波脉冲宽度影响存在近表面盲区。提出了TOFD半跨模式波法进行盲区抑制,利用一次底面反射波在缺陷端点处衍射波的特征及其在B扫查图像中的对称性推导底面缺陷定深公式。仿真和实验结果表明,对于厚度为7.0 mm的铝合金板,在探头中心距为40 mm、中心频率为10 MHz的检测条件下TOFD半跨模式波法能将近表面盲区抑制64%以上,且深度不小于2.0 mm底面缺陷的定位误差不超过6.32%。与模式转换波及TOFD⁃W波相比,半跨模式波不会与底波混叠且离直通波较近,在铝合金板底面缺陷检测中适用性较强。
关键词: 超声衍射时差法(TOFD); 盲区; 半跨模式波; 铝合金; 定量检测
金士杰 , 王志诚 , 田鑫 , 孙旭 , 林莉 . 基于半跨模式波的铝合金板底面缺陷TOFD检测[J]. 航空学报, 2023 , 44(4) : 426674 -426674 . DOI: 10.7527/S1000-6893.2021.26674
When Time-of-Flight Diffraction (TOFD) technique is used to detect the bottom defects in the aluminum alloy plate, there is a near-surface dead zone under the effect of the pulse duration of lateral wave. In this paper, a TOFD half-skip mode wave method is proposed to reduce the dead zone. The characteristics of the diffracted wave of the first back-wall reflected wave at the defect tip and its symmetry in B-scan image are employed to derive the depth determination formula of bottom defect. Simulation and experiment results show that with the proposed method, the range of the near-surface dead zone is reduced by more than 64%, and the positioning errors of the defects with depth of no less than 2.0 mm are within 6.32% for the aluminum alloy plate with a thickness of 7.0 mm by using the probes with 10 MHz center frequency and 40 mm probe center spacing. Compared to the mode-converted wave and the TOFD-W wave, the half-skip mode wave is decoupled with the back-wall wave and is close to the lateral wave, presenting stronger applicability in detecting the bottom defect in aluminum alloy plate.
1 | 邓运来, 张新明. 铝及铝合金材料进展[J]. 中国有色金属学报, 2019, 29(9): 2115-2141. |
DENG Y L, ZHANG X M. Development of aluminium and aluminium alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2115-2141 (in Chinese). | |
2 | 冯吉才. 异种材料连接研究进展[J]. 航空学报, 2022, 43(2): 626413. |
FENG J C. Research progress on dissimilar materials joining[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 626413 (in Chinese). | |
3 | ZHAO K, LIU J H, YU M, et al. SCC evaluation of a 2297 Al-Li alloy rolled plate using the slow-strain rate technique[J]. Chinese Journal of Aeronautics, 2019, 32(11): 2516-2525. |
4 | 王茂松, 杜宇雷. 增材制造钛铝合金研究进展[J]. 航空学报, 2021, 42(7): 625263. |
WANG M S, DU Y L. Research progress of additive manufacturing of TiAl alloys[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 625263 (in Chinese). | |
5 | 张辰威, 张博明. 复合材料贮箱在航天飞行器低温推进系统上的应用与关键技术[J]. 航空学报, 2014, 35(10): 2747-2755. |
ZHANG C W, ZHANG B M. Application and key technology of composites tank in space cryogenic propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2747-2755 (in Chinese). | |
6 | SANTOS L H, SOUSA W P T, DE DAFé S S F, et al. Microstructural characterization and mechanical behavior analysis of 7075-T6 aluminum subjected to simulated lightning strikes[J]. Chinese Journal of Aeronautics, 2021, 34(12): 39-50. |
7 | 高志刚, 何宇廷, 马斌麟, 等. 机翼用铝合金材料原始疲劳质量对比[J]. 航空学报, 2021, 42(5): 524375. |
GAO Z G, HE Y T, MA B L, et al. Initial fatigue quality comparison of aluminum alloy materials for aircraft wings[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524375 (in Chinese). | |
8 | ZHANG F Z. Principles and methods for determining calendar life and corrosion tolerance of mechanical parts[J]. Chinese Journal of Aeronautics, 2021, 34(12): 1-16. |
9 | 穆志韬, 陈定海, 朱做涛, 等. 腐蚀条件下LD2航空铝合金裂纹扩展规律研究[J]. 航空学报, 2013, 34(3): 574-579. |
MU Z T, CHEN D H, ZHU Z T, et al. Fatigue crack growth behavior of aerospace aluminum alloy LD2 under corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 574-579 (in Chinese). | |
10 | 李华斌, 张宏, 杨静. 铝合金薄板CMT焊缝的超声波检测[J]. 物理测试, 2019, 37(3): 7-10. |
LI H B, ZHANG H, YANG J. Ultrasonic testing of the CMT welding seam on aluminum alloy sheet[J]. Physics Examination and Testing, 2019, 37(3): 7-10 (in Chinese). | |
11 | CHABOT A, LAROCHE N, CARCREFF E, et al. Towards defect monitoring for metallic additive manufacturing components using phased array ultrasonic testing[J]. Journal of Intelligent Manufacturing, 2020, 31(5): 1191-1201. |
12 | CHEN X Y, CHEN Z. Research on the ultrasonic testing of defect for LY12 aluminum alloy based on transmission wave in lamb wave[J]. Journal of Vibroengineering, 2017, 19(3): 1771-1781. |
13 | LI W K, CUI H T, WEN W D, et al. In situ nonlinear ultrasonic for very high cycle fatigue damage characterization of a cast aluminum alloy[J]. Materials Science and Engineering: A, 2015, 645: 248-254. |
14 | LU C, WANG Q, LIU F N. Ultrasonic TOFD in the application of thick wall tube welding seam detection pre-research[J]. Advanced Materials Research, 2014, 912-914: 12-17. |
15 | 孙旭, 金士杰, 张东辉, 等. 基于自回归谱外推方法的TOFD检测盲区抑制[J]. 机械工程学报, 2018, 54(22): 15-20. |
SUN X, JIN S J, ZHANG D H, et al. Suppression of dead zone in TOFD with autoregressive spectral extrapolation[J]. Journal of Mechanical Engineering, 2018, 54(22): 15-20 (in Chinese). | |
16 | 程茂, 仇飞, 黄文大, 等. 铝制承压设备焊缝的TOFD检测[J]. 无损检测, 2020, 42(11): 16-22. |
CHENG M, QIU F, HUANG W D, et al. TOFD testing of weld of aluminum pressure equipment[J]. Nondestructive Testing, 2020, 42(11): 16-22 (in Chinese). | |
17 | 强天鹏, 肖雄, 李智军, 等. TOFD技术的检测盲区计算和分析[J]. 无损检测, 2008, 30(10): 738-740, 762. |
QIANG T P, XIAO X, LI Z J, et al. Calculation for the blind zone of TOFD testing technology and its characteristic analysis[J]. Nondestructive Testing, 2008, 30(10): 738-740, 762 (in Chinese). | |
18 | SUN X, LIN L, MA Z Y, et al. Enhancement of time resolution in ultrasonic time-of-flight diffraction technique with frequency-domain sparsity-decomposability inversion (FDSDI) method[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68(10): 3204-3215. |
19 | YEH F W T, LUKOMSKI T, HAAG J, et al. An alternative ultrasonic time of flight diffraction (TOFD) method[J]. NDT & E International, 2018, 100: 74-83. |
20 | JIN S J, SUN X, MA T T, et al. Quantitative detection of shallow subsurface defects by using mode-converted waves in time-of-flight diffraction technique[J]. Journal of Nondestructive Evaluation, 2020, 39(2): 33. |
21 | 丁宁, 金士杰, 张东辉, 等. 基于波型转换的TOFD近表面盲区抑制研究[J]. 机械工程学报, 2017, 53(16): 120-124. |
DING N, JIN S J, ZHANG D H, et al. Research on near surface dead zone reduction of TOFD based on mode-converted theory[J]. Journal of Mechanical Engineering, 2017, 53(16): 120-124 (in Chinese). | |
22 | CHI D Z, GANG T. Shallow buried defect testing method based on ultrasonic TOFD[J]. Journal of Nondestructive Evaluation, 2013, 32(2): 164-171. |
23 | JIN S J, SUN X, LUO Z B, et al. Quantitative detection of shallow subsurface cracks in pipeline with time-of-flight diffraction technique[J]. NDT & E International, 2021, 118: 102397. |
24 | 卢超, 王鑫, 陈振华. 近表面缺陷的超声TOFDR和TOFDW检测[J]. 失效分析与预防, 2012, 7(3): 153-157. |
LU C, WANG X, CHEN Z H. Ultrasonic TOFDR and TOFDW for near surface defect detection[J]. Failure Analysis and Prevention, 2012, 7(3): 153-157 (in Chinese). | |
25 | 金士杰, 刘晨飞, 史思琪, 等. 基于全模式全聚焦方法的裂纹超声成像定量检测[J]. 仪器仪表学报, 2021, 42(1): 183-190. |
JIN S J, LIU C F, SHI S Q, et al. Quantitative crack detection by ultrasonic imaging with the full-mode total focusing method[J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 183-190 (in Chinese). |
/
〈 |
|
〉 |