天问一号着陆火星专栏

火星探测器大气数据测量方法

  • 陈广强 ,
  • 豆国辉 ,
  • 魏昊功 ,
  • 邹昕 ,
  • 李齐 ,
  • 刘周 ,
  • 周伟江
展开
  • 1. 中国航天空气动力技术研究院, 北京 100074;
    2. 北京空间飞行器总体设计部, 北京 100094

收稿日期: 2021-11-04

  修回日期: 2021-11-26

  网络出版日期: 2021-12-24

基金资助

国家数值风洞工程

Air data sensing technology of Mars probe

  • CHEN Guangqiang ,
  • DOU Guohui ,
  • WEI Haogong ,
  • ZOU Xin ,
  • LI Qi ,
  • LIU Zhou ,
  • ZHOU Weijiang
Expand
  • 1. China Academy of Aerospace Aerodynamics, Beijing 100074, China;
    2. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China

Received date: 2021-11-04

  Revised date: 2021-11-26

  Online published: 2021-12-24

Supported by

National Numerical Wind Tunnel Project

摘要

针对火星探测器进入飞行弹道的高马赫数、化学非平衡效应和低动压等特点,提出了一种基于火星进入大气数据系统/惯性测量单元(MEADS/IMU)耦合的测量方法,实现海拔60 km以下区域的火星大气数据测量。利用自主研发CACFD软件平台的化学非平衡模型/完全气体模型计算获得探测器宽速域飞行流场的表面压力点数据,建立了基于BP神经网络的MEADS算法模型。在高马赫数段(Ma>12)利用IMU测量获得的马赫数作为输入条件,结合MEADS算法测量获得总压、动压、静压、攻角和侧滑角等飞行大气参数,成功克服了马赫数无关性对MEADS系统测量的影响。在低马赫数段(Ma≤12),直接应用MEADS算法测量静压、马赫数、攻角和侧滑角。测试结果表明在MEADS系统测压单元误差≤7 Pa的条件:总压测量误差≤14 Pa(1.5%),攻角测量误差≤0.9°,侧滑角测量误差≤0.9°,动压测量误差≤10 Pa(1.5%),静压测量误差≤7 Pa(3%),马赫数测量误差≤0.1。飞行试验数据得出:MEADS测量与IMU测量马赫数、攻角和侧滑角等结果基本一致。

本文引用格式

陈广强 , 豆国辉 , 魏昊功 , 邹昕 , 李齐 , 刘周 , 周伟江 . 火星探测器大气数据测量方法[J]. 航空学报, 2022 , 43(3) : 626619 -626619 . DOI: 10.7527/S1000-6893.2021.26619

Abstract

According to characteristics such as high Mach number, chemical non-equilibrium effect, and low dynamic pressure of the Mars probe entering the flight trajectory, a data measurement method upon entering atmosphere based on MEADS/IMU coupling is proposed to measure Mars atmosphere data in the area below 60 km altitude.Using the chemical non-equilibrium model/complete gas model of the independently developed CACFD software platform, we calculate the surface pressure point data of the wide velocity domain flight flow field of the probe, and creatively establish the MEADS algorithm model based on the BP neural network.In the high Mach section (Ma>12), the Mach number measured by IMU is used as the input condition, and the flight atmospheric parameters such as the total pressure, dynamic pressure, static pressure, angle of attack and sideslip angle are measured in combination with the MEADS algorithm, successfully overcoming the influence of Mach number independence on MEADS system measurement.In the low Mach number section (Ma ≤ 12), the MEADS algorithm is directly applied to measure the static pressure, Mach number, angle of attack and sideslip angle.The test results show that the conditions for the error of the pressure measuring unit in the MEADS system to be ≤ 7 Pa:the total pressure measurement error to be ≤ 14 Pa (1.5%), the angle of attack measurement error ≤ 0.9°, the side slip angle measurement error ≤ 0.9°, the dynamic pressure measurement error ≤ 10 Pa (1.5%), the static pressure measurement error ≤ 7 Pa (3%), and the Mach number measurement error ≤ 0.1.The flight test data show basic consistency of the MEADS measurement results with the Mach number, angle of attack and sideslip angle measured by IMU.

参考文献

[1] KARLGAARD C, KUTTY P, SHIDNER J, et al.Mars entry atmospheric data system trajectory reconstruction algorithms and flight results:AIAA-2013-0028[R].Reston:AIAA,2013.
[2] BECK R, KARLGAARD C, O'KEEFE S, et al.White Mars entry atmospheric data system modeling and algorithm development:AIAA-2009-3916[R].Reston:AIAA,2009.
[3] CARY J, KEENER E R.Flight evaluation of the X-15 ball nose flow-direction sensor as an air data system:NASA TN D-2923[R].Washington D.C.:NASA,1965.
[4] WHITMORE S A, MOES T R, LEONDES C T.Development of a pneumatic high-angle-of-attack flush airdata sensing (HI-FADS) system:NASA-TM-104241[R].Washington D.C.:NASA, 1991.
[5] ROHLF D, BRIEGER O, GROHS T.X-31vector system identification-approach and results:AIAA-2004-4830[R].Reston:AIAA,2004.
[6] Joel C Ellsworth, Stephen A Whitmore.Reentry air data system for a sub-orbital spacecraft based on X-34 design:AIAA-2007-1200[R].Reston:AIAA, 2007.
[7] JOST M, SCHWEGMANN F, KOHLER T.Flush air data system and advanced air data system for the aerospace industry:AIAA-2004-5028[R].Reston:AIAA, 2004.
[8] BAUMANN E, PAHLE J, DAVIS M, et al.X-43A flush air data sensing system flight test results:AIAA-2008-657[R].Reston:AIAA,2008.
[9] ELLSWORTH J C, WHITMORE S A.Simulation of a flush air-data system for trans-atmospheric vehicles[J].Journal of Spacecraft and Rockets, 2008, 45(4):716-732.
[10] Ryoji Takaki Minoru Takizawa.ADS measurement HY-FLEX (Hypersonic Flight Experiment):AIAA-1997-3715[R].Reston:AIAA, 1997.
[11] 温瑞珩, 郑守铎, 叶玮.嵌入式大气数据传感技术的发展现状[J].电光与控制, 2008, 15(8):53-56. WEN R H, ZHENG S D, YE W.Development and current situation of flush air data sensing technologies[J].Electronics Optics & Control, 2008, 15(8):53-56(in Chinese).
[12] 张斌, 于盛林.嵌入式飞行参数传感系统的神经网络算法[J].航空学报, 2006, 27(2):294-298. ZHANG B, YU S L.Neural network algorithm for flush air data sensing system[J].Acta Aeronautica et Astronautica Sinica, 2006, 27(2):294-298(in Chinese).
[13] 郑成军, 陆宇平, 高璐.BP网络在嵌入式大气数据传感系统中的应用[J].测控技术, 2006, 25(6):9-12. ZHENG C J, LU Y P, GAO L.Application of back propagation in flush air data sensing system[J].Measurement & Control Technology, 2006, 25(6):9-12(in Chinese).
[14] 冯建超, 郑成军, 陈峰.嵌入式大气数据传感系统及其BP网络校正算法[J].计算机测量与控制, 2006, 14(4):541-544. FENG J C, ZHENG C J, CHEN F.Calibration algorithms of flush airdata sensing system base on BP neural networks[J].Computer Measurement & Control, 2006, 14(4):541-544(in Chinese).
[15] 郑守铎, 陆宇平, 叶玮.基于χ2检验的FADS系统故障检测与管理技术研究[J].计算机测量与控制, 2007, 15(11):1449-1451, 1454. ZHENG S D, LU Y P, YE W.Technology research of FADS system fault detection and management based on χ2 analysis[J].Computer Measurement & Control, 2007, 15(11):1449-1451, 1454(in Chinese).
[16] 沈国清, 陆宇平, 徐志晖.嵌入式大气数据传感系统误差分析[J].传感器与微系统, 2012, 31(6):62-65. SHEN G Q, LU Y P, XU Z H.Error analysis on flush air data sensitive system[J].Transducer and Microsystem Technologies, 2012, 31(6):62-65(in Chinese).
[17] 赵磊, 陆宇平.基于RBF神经网络的FADS系统及其算法研究[J].飞机设计, 2012, 32(1):43-47. ZHAO L, LU Y P.Research of algorithms of flush airdata sensing system based on RBF neural network[J].Aircraft Design, 2012, 32(1):43-47(in Chinese).
[18] 李清东, 陈璐璐, 张孝功, 等.FADS快速智能故障检测和诊断技术[J].系统工程与电子技术, 2009, 31(10):2544-2546. LI Q D, CHEN L L, ZHANG X G, et al.Flush airdata sensing system fast intelligent fault detection and diagnosis technology[J].Systems Engineering and Electronics, 2009, 31(10):2544-2546(in Chinese).
[19] 郭阳明, 李清东, 蔡小斌, 等.基于奇偶方程的FADS传感器故障检测方法[J].航空计算技术, 2010, 40(2):98-100. GUO Y M, LI Q D, CAI X B, et al.FADS sensors fault detection based on parity equation[J].Aeronautical Computing Technique, 2010, 40(2):98-100(in Chinese).
[20] 高隆隆, 杜经民, 李宝仁.FADS测压管路动态响应特性分析[J].机床与液压, 2010, 38(13):48-51. GAO L L, DU J M, LI B R.Dynamic response characteristic of FADS pneumatic tube[J].Machine Tool & Hydraulics, 2010, 38(13):48-51(in Chinese).
[21] 王岩, 郑伟.分布嵌入式大气数据系统算法的初步研究[J].飞机设计, 2008, 28(6):5-11, 26. WANG Y, ZHENG W.Elementary study on the distributed flush air data system arithmetic[J].Aircraft Design, 2008, 28(6):5-11, 26(in Chinese).
[22] 江城, 倪世宏, 张宗麟, 等.嵌入式大气数据系统神经网络算法仿真[J].系统仿真学报, 2008, 20(9):2288-2291. JIANG C, NI S H, ZHANG Z L, et al.Neural network algorithm simulation of flush air data system[J].Journal of System Simulation, 2008, 20(9):2288-2291(in Chinese).
[23] 李其畅, 刘劲帆, 刘昕, 等.嵌入式大气数据三点解算方法初步研究[J].空气动力学学报, 2014, 32(3):360-363. LI Q C, LIU J F, LIU X, et al.The primary study of 3-point calculation method for the flush air data system[J].Acta Aerodynamica Sinica, 2014, 32(3):360-363(in Chinese).
[24] 张铭格.高超声速嵌入式大气数据传感系统及研究[D].南京:南京航空航天大学, 2014. ZHANG M G.Research on flush AirData sensing system in hypersonic flight[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2014(in Chinese).
[25] 陈康, 符文星, 闫杰.不同布局下高超声速飞行器FADS求解精度[J].固体火箭技术, 2014, 37(4):453-457. CHEN K, FU W X, YAN J.Solving accuracy for flush airdate sensing system of hypersonic aircraft under different configuration[J].Journal of Solid Rocket Technology, 2014, 37(4):453-457(in Chinese).
[26] 孟博, 李荣冰, 刘建业, 等.基于神经网络的类乘波体飞行器FADS算法研究[J].航空计算技术, 2011, 41(2):16-20. MENG B, LI R B, LIU J Y, et al.Research on algorithms of quasi-waverider vehicle FADS based on neural network[J].Aeronautical Computing Technique, 2011, 41(2):16-20(in Chinese).
[27] 熊亮, 刘义明, 黄巧平.武装直升机大气数据传感器技术研究进展[J].传感器与微系统, 2015, 34(2):5-8. XIONG L, LIU Y M, HUANG Q P.Research progress in air data sensor technology for attack helicopter[J].Transducer and Microsystem Technologies, 2015, 34(2):5-8(in Chinese).
[28] 王鹏,金鑫,张卫民.FADS系统在各型号飞行器中的应用[J].飞航导弹,2013,30(2):75-79. WANG P, JIN X, ZHANG W M.Application on every program vehicle of FADS system[J].Winged Missiles Journal,2013,30(2):75-79.
[29] 王鹏, 李秋红, 胡远思, 等.尖楔前体飞行器FADS-α的求解精度研究[J].中国科学:物理学力学天文学, 2015, 45(12):98-108. WANG P, LI Q H, HU Y S, et al.Research on solving accuracy for FADS-α applied to the vehicle with sharp wedged fore-bodies[J].Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(12):98-108(in Chinese).
[30] 王鹏, 金鑫, 张卫民.FADS系统在尖楔前体高超声速飞行器中的应用[J].中国科学:物理学力学天文学, 2013, 43(9):1105-1110. WANG P, JIN X, ZHANG W M.Application of FADS system in hypersonic flight vehicles with sharp wedged fore-bodies[J].Scientia Sinica Physica, Mechanica & Astronomica, 2013, 43(9):1105-1110(in Chinese).
[31] 陈广强,刘吴月,豆修鑫,等.吸气式空空导弹FADS系统设计[J].中国科学:技术科学, 2016,46(11):1193-1206. CHEN G Q, LIU W Y, DOU X X, et al.Flush air data sensing system design for air breathing air-to-air missile[J].Scientia Sinica Technologica, 2016,46(11):1193-1206(in Chinese).
[32] 陈广强, 王贵东, 陈冰雁, 等.低成本飞行试验平台的FADS技术研究[J].宇航学报, 2015, 36(10):1195-1202. CHEN G Q, WANG G D, CHEN B Y, et al.Study of flush air data sensing system technology for low cost flight test platform[J].Journal of Astronautics, 2015, 36(10):1195-1202(in Chinese).
[33] 陈广强, 王贵东, 陈冰雁, 等.高超声速飞行器FADS算法研究[J].飞机设计, 2015, 35(6):1-7. CHEN G Q, WANG G D, CHEN B Y, et al.Study of flush air data system algorithms for hypersonic vehicle[J].Aircraft Design, 2015, 35(6):1-7(in Chinese).
[34] 秦永明, 张春, 董金刚.嵌入式大气数据传感系统风洞标定试验研究[J].空气动力学学报, 2015, 33(4):488-492. QIN Y M, ZHANG C, DONG J G.Experimental study on flush airdata sensing system calibration in wind tunnel[J].Acta Aerodynamica Sinica, 2015, 33(4):488-492(in Chinese).
[35] 杨雷, 侯砚泽, 左光, 等.火星探测器进入飞行气动测量方法研究[J].力学学报, 2015, 47(1):8-14. YANG L, HOU Y Z, ZUO G, et al.Aerodynamic characteristics meassurement of Mars vehicles during entry flight[J].Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1):8-14(in Chinese).
文章导航

/