电子电气工程与控制

远距离逆行轨道上的近距离自然及受控编队

  • 杨驰航 ,
  • 符弘岚 ,
  • 张皓
展开
  • 1.中国科学院 空间应用工程与技术中心 太空应用重点实验室,北京 100094
    2.中国科学院大学,北京 100049
. E-mail: hao.zhang.zhr@gmail.com

收稿日期: 2021-10-25

  修回日期: 2021-11-29

  录用日期: 2021-12-19

  网络出版日期: 2021-12-24

基金资助

中国科学院重点部署项目(ZDRW-KT-2019-1-0102)

Natural and non-natural close formation flight on distant retrograde orbits

  • Chihang YANG ,
  • Honglan FU ,
  • Hao ZHANG
Expand
  • 1.Key Laboratory of Space Utilization,Technology and Engineering Center for Space Utilization,Chinese Academy of Sciences,Beijing 100094,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2021-10-25

  Revised date: 2021-11-29

  Accepted date: 2021-12-19

  Online published: 2021-12-24

Supported by

Key Deployment Program of the Chinese Academy of Sciences(ZDRW-KT-2019-1-0102)

摘要

远距离逆行轨道(DROs)是地月空间中一族稳定的周期轨道,适用于地月空间站等长期任务。为维持任务的长期存在,交会对接及编队飞行等任务是必要的。因此有必要分析远距离逆行轨道上的近距离相对运动解,并进行编队设计。首先,基于Floquet理论得到了远距离逆行轨道上的近距离线性化相对运动的基础解集,并对其解进行了分类与分析。其次,以基础解集中的自然周期解为基础设计了伴飞编队,并对其特性进行了全面分析。之后,针对圆形受控绕飞编队做了详细的分析,可用于指导后续受控编队的设计。最后,设计了两点之间的安全转移编队,可用于任意两点之间的转移,并保证转移过程中主星与副星之间具有足够的安全距离。

本文引用格式

杨驰航 , 符弘岚 , 张皓 . 远距离逆行轨道上的近距离自然及受控编队[J]. 航空学报, 2023 , 44(5) : 326563 -326563 . DOI: 10.7527/S1000-6893.2021.26563

Abstract

Distant Retrograde Orbits (DROs) are a kind of periodic orbits in the Earth-Moon system. DROs are appropriate for long-term missions due to favorable stability. Rendezvous and docking is a basic technology for the supplement of long-term missions, as well as close formation flying for some flying-around tasks. It is thus needed to analyze the close relative motion in DROs and furthermore develop close formation designs. Based on the Floquet theory, a fundamental solution for linear relative dynamics in DROs is obtained. A natural formation is designed based on the natural periodic solution for the linear relative dynamics. Characteristics of the natural formation are analyzed. Moreover, non-natural formations for fast circumnavigate is designed with impulse maneuvers. The fuel consumption of different types of circular reference orbits are analyzed to guide formation designs. Finally, a type of reference trajectories is designed for transfer between two arbitrary positions with safety guaranteed.

参考文献

1 CLOHESSY W H, WILTSHIRE R S. Terminal guidance system for satellite rendezvous[J]. Journal of the Aerospace Sciences196027(9): 653-658.
2 罗亚中. 空间最优交会路径规划策略研究[D]. 长沙: 国防科学技术大学, 2007: 1-2.
  LUO Y Z. Study on space optimal rendezvous trajectory planning approach[D]. Changsha: National University of Defense Technology, 2007: 1-2 (in Chinese).
3 詹虎. 载人航天工程巡天空间望远镜大视场多色成像与无缝光谱巡天[J]. 科学通报202166(11): 1290-1298.
  ZHAN H. The wide-field multiband imaging and slitless spectroscopy survey to be carried out by the survey space telescope of China manned space program[J]. Chinese Science Bulletin202166(11): 1290-1298 (in Chinese).
4 T?IATU C M. The space race on sustainability: Business and legal challenges for on-orbit-servicing[C]∥ On-Orbit Servicing: Next Generation of Space Activities. Berlin: Springer, 2020: 91-121.
5 XU M, WANG Y, XU S J. On the existence of J2 invariant relative orbits from the dynamical system point of view[J].Celestial Mechanics and Dynamical Astronomy2012112(4): 427-444.
6 DANG Z H, ZHANG H. Linearized relative motion equations through orbital element differences for general Keplerian orbits[J]. Astrodynamics20182(3): 201-215.
7 彭超, 温昶煊, 高扬. 地月空间DRO与HEO(3∶1/2∶1)共振轨道延拓求解及其稳定性分析[J]. 载人航天201824(6): 703-718.
  PENG C, WEN C X, GAO Y. DRO and HEO (3∶1/2∶1) resonant orbits in cislunar space calculated by continuation and their stability analysis[J]. Manned Spaceflight201824(6): 703-718 (in Chinese).
8 WHITLEY R, MARTINEZ R. Options for staging orbits in cislunar space[C]∥ 2016 IEEE Aerospace Conference. Piscataway: IEEE Press, 2016: 1-9.
9 BEZROUK C, PARKER J S. Long term evolution of distant retrograde orbits in the Earth-Moon system[J]. Astrophysics and Space Science2017362(9): 176.
10 SCHEERES D J, HSIAO F Y, VINH N X. Stabilizing motion relative to an unstable orbit: Applications to spacecraft formation flight[J]. Journal of Guidance, Control, and Dynamics200326(1): 62-73.
11 JUNG S. Formation flying along unstable libration point orbits using switching Hamiltonian structure-preserving control[J]. Acta Astronautica2019158: 1-11.
12 HOWELL K C. Control of satellite imaging formations in multi-body regimes[J]. Acta Astronautica200964(5-6): 554-570.
13 李鹏. 拉格朗日点附近编队飞行动力学与控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2009: 65-69.
  LI P. Study on dynamics and control of spacecraft formation flying near Lagrange point[D]. Harbin: Harbin Institute of Technology, 2009: 65-69 (in Chinese).
14 GARCIA-TABERNER L. FEFF methodology for spacecraft formations reconfiguration in the vicinity of libration points[J]. Acta Astronautica201067(7-8): 810-817.
15 PENG H J, LI C. Bound evaluation for spacecraft swarm on libration orbits with an uncertain boundary[J]. Journal of Guidance, Control, and Dynamics201740(10): 2690-2698.
16 PERNICKA H J, CARLSON B A, BALAKRISHNAN S N. Spacecraft formation flight about libration points using impulsive maneuvering[J]. Journal of Guidance, Control, and Dynamics200629(5): 1122-1130.
17 QI R, XU S J, XU M. Impulsive control for formation flight about libration points[J]. Journal of Guidance, Control, and Dynamics201235(2): 484-496.
18 GóMEZ G, MARCOTE M, MASDEMONT J J, et al. Zero relative radial acceleration cones and controlled motions suitable for formation flying[J]. The Journal of the Astronautical Sciences200553(4): 413-431.
19 HéRITIER A. Dynamical evolution of natural formations in libration point orbits in a multi-body regime[J]. Acta Astronautica2014102: 332-340.
20 HOWELL K C, MARCHAND B G. Natural and non-natural spacecraft formations near the L1 and L2 libration points in the Sun-Earth/Moon ephemeris system[J]. Dynamical Systems200520(1): 149-173.
21 SIMANJUNTAK T, NAKAMIYA M, KAWAKATSU Y. Design of natural loose formation flying around halo orbits[J]. Transactions of the Japan Society for Aeronautical and Space Sciences201255(4): 254-262.
22 周敬, 胡军, 张斌. 圆型限制性三体问题相对运动解析研究[J]. 宇航学报202041(2): 154-165.
  ZHOU J, HU J, ZHANG B. Analytical solutions for relative motion in the circular restricted three-body problem[J]. Journal of Astronautics202041(2): 154-165 (in Chinese).
23 FRANZINI G, INNOCENTI M. Relative motion dynamics in the restricted three-body problem[J]. Journal of Spacecraft and Rockets201956(5): 1322-1337.
24 CONTE D, SPENCER D B. Preliminary study on relative motion and rendezvous between spacecraft in the restricted three-body problem: AAS 16-369[R] Washington, D.C.: AAS, 2016.
25 UEDA S, MURAKAMI N, IKENAGA T. A study on rendezvous trajectory design utilizing invariant manifolds of cislunar periodic orbits: AIAA-2017-1729[R]. Reston: AIAA, 2017.
26 陈冠华, 杨驰航, 张晨,等. 地月空间的远距离逆行轨道族及其分岔研究[J]. 北京航空航天大学学报202248(12):2576-2588.
  CHEN G H, YANG C H, ZHANG C, et al. Distant retrograde orbits and its bifurcations in Earth-Moon system[J]. Journal of Beijing University of Aeronautics and Astronautics202248(12):2576-2588 (in Chinese)
27 CARMEN C. Ordinary differential equations with applications[M]. New York: Springer, 2020: 187-224.
文章导航

/