流体力学与飞行力学

预混旋流燃烧火焰三维折射率场重建

  • 李智豪 ,
  • 张彪 ,
  • 李健 ,
  • 许传龙 ,
  • 宋兆龙
展开
  • 东南大学 能源与环境学院 大型发电装备安全运行与智能测控国家工程研究中心,南京 210096
.E-mail: zhangbiao@seu.edu.cn

收稿日期: 2021-10-08

  修回日期: 2021-10-27

  录用日期: 2021-12-10

  网络出版日期: 2021-12-24

基金资助

国家自然科学基金(52176167);江苏省自然科学基金(BK20201279)

Reconstruction of three-dimensional refractive index field of premixed swirl combustion flame

  • Zhihao LI ,
  • Biao ZHANG ,
  • Jian LI ,
  • Chuanlong XU ,
  • Zhaolong SONG
Expand
  • National Engineering Research Center of Power Generation Control and Safety,School of Energy and Environment,Southeast University,Nanjing 210096,China

Received date: 2021-10-08

  Revised date: 2021-10-27

  Accepted date: 2021-12-10

  Online published: 2021-12-24

Supported by

National Natural Science Foundation of China(52176167);Natural Science Foundation of Jiangsu Province(BK20201279)

摘要

旋流燃烧器的结构参数会对航空发动机燃烧室的燃烧过程产生影响,为了获取高分辨率的流场三维信息以分析旋流燃烧器对燃烧室燃烧性能的影响并提出优化策略,可通过背景导向纹影层析(BOST)技术实现复杂流动的三维折射率、密度和温度分布的瞬态重建。首先采用镜头等效光学系统和龙格-库塔光线追迹方法对光线偏折产生的畸变图像进行模拟,在此基础上采用光流方程重建模型对规则和复杂对象的折射率场进行了重建模拟,分析了图像偏移大小的影响因素,计算了测量体、焦距等设置参数对重建误差的影响,提出了背景导向纹影的优化测量设置方法。模拟结果显示采用优化设置参数后重建折射率场较好地展示了湍流旋流火焰的旋进射流、褶皱和涡旋等流场复杂结构。

本文引用格式

李智豪 , 张彪 , 李健 , 许传龙 , 宋兆龙 . 预混旋流燃烧火焰三维折射率场重建[J]. 航空学报, 2023 , 44(4) : 126480 -126480 . DOI: 10.7527/S1000-6893.2021.26480

Abstract

The structural parameters of the swirl combustors will affect the combustion process of the aeroengine combustion chamber. In order to obtain high-resolution three-dimensional flow field information, analyze the influence of the swirl combustors on the combustion performance of the combustion chamber and subsequently put forward optimization strategies, the Background Oriented Schlieren Tomography technique (BOST) can be used to reconstruct the instantaneous three-dimensional refractive index, density and temperature distribution of complex flows. First, the lens equivalent optical system and Runge-Kutta ray tracing method are used to simulate the distorted image caused by ray deflection. On this basis, the refractive index field of regular and complex objects is reconstructed using the optical flow equation reconstruction model. The influencing factors of image distortion are analyzed. The influence of measurement volume, focal length and other setting parameters on the reconstruction error is calculated. The optimized measurement setting method of background oriented schlieren is proposed. The simulation results show that the reconstructed refractive index field with optimized parameters show the complex flow field structures such as swirling jet, fold and vortex of turbulent swirling flame.

参考文献

1 张磊, 于锦禄, 陈一, 等. 基于滑动弧的航空发动机燃烧室头部喷雾特性[J]. 航空学报202142(3): 124308.
  ZHANG L, YU J L, CHEN Y, et al. Spray characteristics of gliding arc discharge combustion dome of areo-engine combustors[J]. Acta Aeronautica et Astronautica Sinica202142(3): 124308 (in Chinese).
2 李军, 栗智宇, 李志刚, 等. 燃烧室和涡轮相互作用下高压涡轮级气热性能研究进展[J]. 航空学报202142(3): 024111.
  LI J, LI Z Y, LI Z G, et al. Aerothermal performance of high pressure turbine stage with combustor-turbine interactions: Review[J]. Acta Aeronautica et Astronautica Sinica202142(3): 024111 (in Chinese).
3 DE A, ACHARYA S. Parametric study of upstream flame propagation in hydrogen-enriched premixed combustion: Effects of swirl, geometry and premixedness[J]. International Journal of Hydrogen Energy201237(19): 14649-14668.
4 LI T, PAREJA J, FUEST F, et al. Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames[J]. Measurement Science and Technology201829(1): 015206.
5 MA L, LEI Q C, IKEDA J, et al. Single-shot 3D flame diagnostic based on volumetric laser induced fluorescence (VLIF)[J]. Proceedings of the Combustion Institute201736(3): 4575-4583.
6 LIU C, CAO Z, LIN Y Z, et al. Online cross-sectional monitoring of a swirling flame using TDLAS tomography[J]. IEEE Transactions on Instrumentation and Measurement201867(6): 1338-1348.
7 DONG L, TITTEL F K, LI C G, et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing[J]. Optics Express201624(6): A528-A535.
8 DALZIEL S B, HUGHES G O, SUTHERLAND B R. Whole-field density measurements by ‘synthetic schlieren’[J]. Experiments in Fluids200028(4): 322-335.
9 VENKATAKRISHNAN L, SURIYANARAYANAN P. Density field of supersonic separated flow past an afterbody nozzle using tomographic reconstruction of BOS data[J]. Experiments in Fluids200947(3): 463-473.
10 LEOPOLD F, OTA M, KLATT D, et al. Reconstruction of the unsteady supersonic flow around a spike using the colored background oriented schlieren technique[J]. Journal of Flow Control, Measurement & Visualization, 20131(2): 69-76.
11 NICOLAS F, DONJAT D, PLYER A, et al. Experimental study of a co-flowing jet in ONERA’s F2 research wind tunnel by 3D background oriented schlieren[J]. Measurement Science and Technology201728(8): 085302.
12 IFFA E D, AZIZ A R A, MALIK A S. Concentration measurement of injected gaseous fuel using quantitative schlieren and optical tomography[J]. Journal of the European Optical Society Rapid Publications20105: 10029.
13 ATKINSON G A, HANCOCK E R. Two-dimensional BRDF estimation from polarisation[J]. Computer Vision and Image Understanding2008111(2): 126-141.
14 NICOLAS F, TODOROFF V, PLYER A, et al. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements[J]. Experiments in Fluids201557(1): 1-21.
15 GRAUER S J, UNTERBERGER A, RITTLER A, et al. Instantaneous 3D flame imaging by background-oriented schlieren tomography[J]. Combustion and Flame2018196: 284-299.
16 GRAUER S J, STEINBERG A M. Fast and robust volumetric refractive index measurement by unified background-oriented schlieren tomography[J]. Experiments in Fluids202061(3): 80.
17 赵凯华. 光学[M]. 北京:高等教育出版社,2004.
  ZHAO K H. Optics[M]. Beijing: Higher Education Press, 2004 (in Chinese).
18 HUANG Y, SHI G D, ZHU K Y. Runge-Kutta ray tracing technique for solving radiative heat transfer in a two-dimensional graded-index medium[J]. Journal of Quantitative Spectroscopy and Radiative Transfer2016176: 24-33.
19 王帅. 基于龙格库塔法的非均匀介质辐射特性及耦合传热分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.
  WANG S. Radiation characteristics and coupled heat transfer analysis of inhomogeneous media based on the runge-kutta algorithm[D]. Harbin: Harbin Institute of Technology, 2018 (in Chinese).
20 GOLDHAHN E, SEUME J. The background oriented schlieren technique: Sensitivity, accuracy, resolution and application to a three-dimensional density field[J]. Experiments in Fluids200743(2/3): 241-249.
21 DAUN K J, GRAUER S J, HADWIN P J. Chemical species tomography of turbulent flows: Discrete ill-posed and rank deficient problems and the use of prior information[J]. Journal of Quantitative Spectroscopy & Radiative Transfer2016172: 58-74.
22 郑恩希. 几种不适定问题的正则化方法及其数值实现[D]. 长春: 吉林大学, 2009.
  ZHENG E X. Several regularization methods for ill-posed problems and their numerical realization[D]. Changchun: Jilin University, 2009 (in Chinese).
23 ANDERSEN A H, KAK A C. Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm[J]. Ultrasonic Imaging19846(1): 81-94.
24 王志凯, 江立军, 陈盛, 等. 受限空间内三级旋流流场和燃烧性能研究[J]. 航空学报202142(3): 124210.
  WANG Z K, JIANG L J, CHEN S, et al. Study on flow fields and combustion characteristics of triple swirler in confined zone[J]. Acta Aeronautica et Astronautica Sinica202142(3): 124210 (in Chinese).
文章导航

/