论文

典型航空分离流动的雷诺应力模型数值模拟

  • 舒博文 ,
  • 杜一鸣 ,
  • 高正红 ,
  • 夏露 ,
  • 陈树生
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国空气动力研究与发展中心 空天技术研究所, 绵阳 621000;
    3. 沈阳航空航天大学 航空宇航学院, 沈阳 110000;
    4. 航空工业第一飞机设计研究院, 西安 710089

收稿日期: 2021-09-15

  修回日期: 2021-11-18

  网络出版日期: 2021-12-24

Numerical simulation of Reynolds stress model of typical aerospace separated flow

  • SHU Bowen ,
  • DU Yiming ,
  • GAO Zhenghong ,
  • XIA Lu ,
  • CHEN Shusheng
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. Shenyang Aerospace University, Shenyang 110000, China;
    4. AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2021-09-15

  Revised date: 2021-11-18

  Online published: 2021-12-24

摘要

先进飞行器设计对CFD方法的边界层分离模拟能力提出了更高要求,传统雷诺平均纳维-斯托克斯(RANS)涡黏性模型因建模和构造层面的理论缺陷导致其分离流动预测可信度较低。雷诺应力模型由于未对雷诺应力及其分量关系进行建模,对湍流非平衡、旋转以及雷诺应力各向异性等流动现象具有天然的理论优势。为验证与确认雷诺应力模型对典型航空分离流动的预测能力,基于SSG/LRR-g模型,以NACA4412翼型大攻角分离、M6机翼跨声速分离以及F6翼身结合区分离流动为例,探讨了雷诺应力模型对逆压梯度、激波诱导分离、二次流动分离等典型航空分离流动预测的适应性。通过与k-ω剪应力输运(SST)模型模拟结果对比发现,雷诺应力模型对分离泡大小、速度型分布、雷诺应力分布和激波位置等关键特征的模拟精度较涡黏性模型显著提升,基本验证了雷诺应力模型可在翼身接合区角区流动和三维强激波诱导分离等问题中得到正确的流动特征,而SST模型在此类流动中基本失效,显示了雷诺应力模型在典型航空分离流动中较涡黏模型的优势。同时,发现k-ω SST模型所包含的Bradshaw假设在三维激波诱导分离较强时严重影响了模型预测的准确性,是预测结果偏离试验的主要原因。此外,还基于计算结果与模型构造提出了雷诺应力模型以及涡黏性模型可能的改进方向。

本文引用格式

舒博文 , 杜一鸣 , 高正红 , 夏露 , 陈树生 . 典型航空分离流动的雷诺应力模型数值模拟[J]. 航空学报, 2022 , 43(11) : 526385 -526385 . DOI: 10.7527/S1000-6893.2021.26385

Abstract

Advanced aircraft design puts forward higher requirements for the boundary layer separation simulation capability of the CFD method. The traditional Reynolds Averaged Navier-Stokes equations (RANS) vortex viscosity model has a low reliability of separation flow prediction due to theoretical defects in modeling and structural level. Because the Reynolds stress model does not model the Reynolds stress and its component relationships, it has natural theoretical advantages in turbulent non-equilibrium, rotation, and Reynolds stress anisotropy. To verify and confirm the prediction ability of the Reynolds stress model for typical aviation separation flows, based on the SSG/LRR-g model, cases of the NACA4412 airfoil high angle of attack separation, M6 wing transonic separation and F6 wing body junction zone separation flow are analyzed. The adaptability of the Reynolds stress model to the prediction of typical aviation separation flow such as reverse pressure gradient, shock-induced separation, and secondary flow separation is discussed. A comparison of the simulation result with that of the k-ω Shear Stress Transport (SST) model finds that the Reynolds stress model significantly improves the simulation accuracy for key features such as separation bubble size, velocity distribution, Reynolds stress distribution, and shock wave position compared to the eddy viscosity model, which basically verifies the advantage of the Reynolds stress model. The model can obtain the correct flow characteristics in the corner flow of the wing body junction area and the three-dimensional strong shock induced separation. However, the SST model basically fails in this type of flow, showing that the Reynolds stress model is more turbulent in the typical aviation separated flow.It is also found that the Bradshaw hypothesis contained in the k-ω SST model severely affects the accuracy of the model's prediction when the three-dimensional shock induced separation is strong, which is the main reason for the deviation of the prediction results from the experiment. In addition, the Reynolds stress model and the possible improvement directions of the eddy viscosity model are proposed based on the calculation results and model structure.

参考文献

[1] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[2] DANDOIS J. Improvement of corner flow prediction using the quadratic constitutive relation[J]. AIAA Journal, 2014, 52(12):2795-2806.
[3] 阎超, 屈峰, 赵雅甜, 等. 航空航天CFD物理模型和计算方法的述评与挑战[J]. 空气动力学学报, 2020, 38(5):829-857. YAN C, QU F, ZHAO Y T, et al. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics[J]. Acta Aerodynamica Sinica, 2020, 38(5):829-857(in Chinese).
[4] SPALART P R. Philosophies and fallacies in turbulence modeling[J]. Progress in Aerospace Sciences, 2015, 74:1-15.
[5] DURBIN P A. Some recent developments in turbulence closure modeling[J]. Annual Review of Fluid Mechanics, 2018, 50:77-103.
[6] CHOU P Y. On velocity correlations and the solutions of the equations of turbulent fluctuation[J]. Quarterly of Applied Mathematics, 1945, 3(1):38-54.
[7] LAUNDER B E, REECE G J, RODI W. Progress in the development of a Reynolds-stress turbulence closure[J]. Journal of Fluid Mechanics, 1975, 68(3):537-566.
[8] SPEZIALE C G, SARKAR S, GATSKI T B. Modelling the pressure-strain correlation of turbulence:An invariant dynamical systems approach[J]. Journal of Fluid Mechanics, 1991, 227:245-272.
[9] CÉCORA R D, EISFELD B, PROBST A, et al. Differential Reynolds stress modeling for aeronautics:AIAA-2012-0465[R]. Reston:AIAA, 2012.
[10] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[11] LEE-RAUSCH E M, RUMSEY C L, TOGITI V K, et al. Application of a full Reynolds stress model to high lift flows:AIAA-2016-3944[R]. Reston:AIAA, 2016.
[12] EISFELD B, RUMSEY C, TOGITI V. Verification and validation of a second-moment-closure model[J]. AIAA Journal, 2016, 54(5):1524-1541.
[13] APETREI R M, CURIEL-SOSA J L, QIN N. Using the Reynolds stress model to predict shock-induced separation on transport aircraft[J]. Journal of Aircraft, 2018, 56(2):583-590.
[14] LANDA T, KLUG L, RADESPIEL R, et al. Experimental and numerical analysis of a streamwise vortex downstream of a delta wing[J]. AIAA Journal, 2020, 58(7):2857-2868.
[15] 聂胜阳, 高正红, 黄江涛. 微分雷诺应力模型在激波分离流中的应用[J]. 空气动力学学报, 2012, 30(1):52-56. NIE S Y, GAO Z H, HUANG J T. Differential Reynolds stress model for shock & separated flow[J]. Acta Aerodynamica Sinica, 2012, 30(1):52-56(in Chinese).
[16] 董义道, 王东方, 王光学, 等. 雷诺应力模型的初步应用[J]. 国防科技大学学报, 2016, 38(4):46-53. DONG Y D, WANG D F, WANG G X, et al. Preliminary application of Reynolds stress model[J]. Journal of National University of Defense Technology, 2016, 38(4):46-53(in Chinese).
[17] 王圣业, 王光学, 董义道, 等. 基于雷诺应力模型的高精度分离涡模拟方法[J]. 物理学报, 2017, 66(18):184701. WANG S Y, WANG G X, DONG Y D, et al. High-order detached-eddy simulation method based on a Reynolds-stress background model[J]. Acta Physica Sinica, 2017, 66(18):184701(in Chinese).
[18] TOGITI V K, EISFELD B. Assessment of g-equation formulation for a second-moment Reynolds stress turbulence model:AIAA-2015-2925[R]. Reston:AIAA, 2015.
[19] WILCOX D C. Turbulence modeling for CFD[M]. 3rd edition. LOS Angeles:DCW Industries, 2002.
[20] ROTTA J. Statistische theorie nichthomogener turbulenz[J]. Zeitschrift fur Physik, 1951, 129(6):547-572.
[21] LAKSHMIPATHY S, TOGITI V. Assessment of alternative formulations for the specific-dissipation rate in RANS and variable-resolution turbulence models:AIAA-2011-3978[R]. Reston:AIAA, 2011.
[22] COLES D, WADCOCK A J. Flying-hot-wire study of flow past an NACA 4412 airfoil at maximum lift[J]. AIAA Journal, 1979, 17(4):321-329.
[23] NASA Langley Research Center. Turbulence modeling resource[EB/OL]. (2021-07-26)[2021-09-15]. https://turbmodels.larc.nasa.gov.
[24] SCHMITT V. Pressure distributions on the ONERA M6-wing at transonic Mach numbers, experimental data base for computer program assessment:AGARD AR-138[R]. Brussels:AGARD, 1979.
[25] BABISKY H, HARVEY J K. 激波边界层干扰[M]. 白菡尘, 译. 北京:国防工业出版社, 2015:5. BABISKY H, HARVEY J K. Shock wave-boundary-layer interactions[M].BAI H C, translated. Beijing:National Defense Industry Press, 2015:5(in Chinese).
[26] RUMSEY C L, VATSA V N. Comparison of the predictive capabilities of several turbulence models[J]. Journal of Aircraft, 1995, 32(3):510-514.
[27] DARGAHI B. The turbulent flow field around a circular cylinder[J]. Experiments in Fluids, 1989, 8(1):1-12.
[28] APSLEY D, LESCHZINER M. Investigation of advanced turbulence models for the flow in a generic wing-body junction[J]. Flow, Turbulence and Combustion, 2001, 67(1):25-55.
[29] RUMSEY C L, LEE H C, PULLIAM T H. Reynolds-averaged Navier-Stokes computations of the NASA juncture flow model using FUN3D and OVERFLOW:AIAA-2020-1304[R]. Reston:AIAA, 2020.
[30] BK HAZARIKA, R RAJ. Three-dimensional fluid flow phenomena in the blade end wall corner region[J]. International Journal of Turbo and Jet Engines, 1989, 6(3-4):311-326.
[31] NASA Langley Research Center. AIAA Drag Prediction Workshop[EB/OL]. (2021-07-26)[2021-09-15]. http://aaac.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw.
[32] SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3):252-263.
[33] XIAO H, CINNELLA P. Quantification of model uncertainty in RANS simulations:A review[J]. Progress in Aerospace Sciences, 2019, 108:1-31.
文章导航

/