流体力学与飞行力学

基于梯度下降的水滴收集率计算方法

  • 任靖豪 ,
  • 王强 ,
  • 李维浩 ,
  • 刘宇 ,
  • 易贤
展开
  • 1.中国空气动力研究与发展中心 结冰与防除冰重点实验室,绵阳 621000
    2.中国空气动力研究与发展中心 空气动力学国家重点实验室,绵阳 621000
.E-mail:yixian_2000@163.com

收稿日期: 2021-09-14

  修回日期: 2021-11-17

  录用日期: 2021-12-11

  网络出版日期: 2021-12-24

基金资助

国家自然科学基金(12132019);国家重大科技专项(J2019-Ⅲ-0010-0054)

A prediction algorithm of collection efficiency based on gradient descent method

  • Jinghao REN ,
  • Qiang WANG ,
  • Weihao LI ,
  • Yu LIU ,
  • Xian YI
Expand
  • 1.Key Laboratory of Icing and Anti/De-icing,China Aerodynamics Research and Development Center,Mianyang 621000,China
    2.State Key Laboratory of Aerodynamics,China Aerodynamics Research and Development Center,Mianyang 621000,China

Received date: 2021-09-14

  Revised date: 2021-11-17

  Accepted date: 2021-12-11

  Online published: 2021-12-24

Supported by

National Natural Science Foundation of China(12132019);National Major Science and Technology Project (J2019-Ⅲ-0010-0054)

摘要

拉格朗日方法在计算三维复杂外形的水滴撞击特性时,一般需要通过插值获得物面网格上的水滴收集率,而这一过程容易造成计算结果失真。建立了一种基于梯度下降的水滴收集率计算方法,通过确定撞击物面网格角点的水滴轨迹实现物面网格中心处的水滴收集率计算,避免插值运算。该方法的计算思路如下:根据撞击点到目标点的距离,采用梯度下降法自适应地调控水滴的初始释放位置,使撞击点落在壁面网格角点附近的给定阈值范围内;采用邻点检索算法,快速确定迎风面内所有撞击网格角点的水滴轨迹;基于流管定义,计算出网格中心处的水滴收集率。采用该方法对典型三维外形的水滴收集率进行了计算,并与相关文献结果进行对比。结果显示计算结果与文献数据吻合良好,有效克服了现有技术中因插值导致的结果失真问题,能够为飞机结冰及防除冰技术研究提供参考。

本文引用格式

任靖豪 , 王强 , 李维浩 , 刘宇 , 易贤 . 基于梯度下降的水滴收集率计算方法[J]. 航空学报, 2023 , 44(4) : 126381 -126381 . DOI: 10.7527/S1000-6893.2021.26381

Abstract

The collection efficiency transfer from impinging point to grid nodes is indispensable when determining droplet impingement property by the traditional Lagrange method. However, the general interpolation technique may bring errors and make the results disagree with the reality in the three-dimensional case. To void the interpolation, this paper proposed a new strategy that gets the trajectory of impinging near the grid node by the gradient descent method and calculates the collection efficiency on the cell center. The improved algorithm uses a deviation function iteration by gradients descent method to reduce the distance between an impinging point and the grid node. And then, a neighbor search algorithm is applied to obtain all the possible trajectories that the droplets end at the grid node. Finally, the collection efficiency on the center of the surface control element could be presented with the tube define model. In this paper, some representative cases valuated the improved method. The testing report showed that the calculation results using the proposed method are consistent with the experimental data and are better than the interpolation results by the traditional algorithm.

参考文献

1 TONG X, LUKE E A. Robust and accurate Eulerian multiphase simulations of icing collection efficiency using singularity diffusion model[J]. Engineering Applications of Computational Fluid Mechanics20104(4): 483-495.
2 易贤, 王开春, 桂业伟, 等. 结冰面水滴收集率欧拉计算方法研究及应用[J]. 空气动力学学报201028(5): 596-601, 608.
  YI X, WANG K C, GUI Y W, et al. Study on Eulerian method for icing collection efficiency computation and its application[J]. Acta Aerodynamica Sinica201028(5): 596-601, 608 (in Chinese).
3 ALIAGA C N, AUBé M S, BARUZZI G S, et al. FENSAP-ICE-unsteady: Unified in-flight icing simulation methodology for aircraft, rotorcraft, and jet engines[J]. Journal of Aircraft201148(1): 119-126.
4 CAO Y H, TAN W Y, WU Z L. Aircraft icing: An ongoing threat to aviation safety[J]. Aerospace Science and Technology201875: 353-385.
5 张辰, 孔维梁, 刘洪. 大粒径过冷水滴结冰模拟破碎模型研究[J]. 空气动力学学报201331(2): 144-150.
  ZHANG C, KONG W L, LIU H. An investigation on the breakup model for icing simulation of supercooled large droplets[J]. Acta Aerodynamica Sinica201331(2): 144-150 (in Chinese).
6 WRIGHT W. Validation results for LEWICE 3.0[C]∥43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
7 SAEED F, BRETTE C, FREGEAU M, et al. A three-dimensional water droplet trajectory and impingement analysis program[C]∥23rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2005.
8 HEDDE T, GUFFOND D. Improvement of the ONERA3-D icing code, comparison with 3D experimental shapes: AIAA-1993-169[R].Reston: AIAA, 1993.
9 LEE S, LOTH E. Simulation of icing on a cascade of stator blades[J]. Journal of Propulsion and Power200824(6): 1309-1316.
10 QIN C, LOTH E. Numerical study of droplet trajectory and collection efficiency in IRT with large blockage effects: AIAA-2017-4376 [R]. Reston: AIAA, 2017.
11 RENDALL T C S, ALLEN C B. Finite-volume droplet trajectories for icing simulation[J]. International Journal of Multiphase Flow201458: 185-194.
12 WIDHALM M, RONZHEIMER A, MEYER J. Lagrangian particle tracking on large unstructured three-dimensional meshes[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
13 XIE L, LI P Z, CHEN H, et al. Robust and efficient prediction of the collection efficiency in icing accretion simulation for 3D complex geometries using the Lagrangian approach I: An adaptive interpolation method based on the restricted radial basis functions[J]. International Journal of Heat and Mass Transfer2020150: 119290.
14 任靖豪, 易贤, 王强, 等. 复杂构型水滴收集率的拉格朗日计算方法[J]. 航空动力学报202035(12): 2553-2561.
  REN J H, YI X, WANG Q, et al. Lagrangian simulation method of droplet collection efficiency for complex configuration[J]. Journal of Aerospace Power202035(12): 2553-2561 (in Chinese).
15 RUDER S. An overview of gradient descent optimization algorithms[DB/OL]. 2016: arXiv: .
16 赵钟, 张来平, 何磊, 等. 适用于任意网格的大规模并行CFD计算框架PHengLEI[J]. 计算机学报201942(11): 2368-2383.
  ZHAO Z, ZHANG L P, HE L, et al. PHengLEI: A large scale parallel CFD framework for arbitrary grids[J]. Chinese Journal of Computers201942(11): 2368-2383 (in Chinese).
17 孙志国, 朱春玲. 三维机翼表面水滴撞击特性计算[J]. 计算物理201128(5): 677-685.
  SUN Z G, ZHU C L. Calculation of water-droplet impingement on wing surface[J]. Chinese Journal of Computational Physics201128(5): 677-685 (in Chinese).
18 刘深深, 桂业伟, 唐伟, 等. 一种多场耦合数据传递新方法[J]. 宇航学报201637(1): 61-67.
  LIU S S, GUI Y W, TANG W, et al. A new data transfer method in fluid-thermal-structure coupling problems[J]. Journal of Astronautics201637(1): 61-67 (in Chinese).
19 BIDWELL C, STANLEY MOHLER Y R. Collection efficiency and ice accretion calculations for a sphere, a swept MS(1)-317 wing, a swept NACA-0012 wing tip, an axisymmetric inlet, and a Boeing 737-300 inlet[C]∥33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1995.
20 PAPADAKIS M, HUNG K, YEONG H W, et al. Experimental investigation of water impingement on single and multi-element airfoils[C]∥38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000.
21 SANG W M, SHI Y, XI C. Numerical simulation of icing effect and ice accretion on three-dimensional configurations[J]. Science China Technological Sciences201356(9): 2278-2288.
22 PENA D, HOARAU Y, LAURENDEAU E. A single step ice accretion model using level-set method[J]. Journal of Fluids and Structures201665: 278-294.
文章导航

/