基于卫星实测数据的X射线脉冲星导航体制验证
收稿日期: 2021-10-13
修回日期: 2021-10-27
录用日期: 2021-12-04
网络出版日期: 2021-12-09
X-ray pulsar-based navigation verification based on satellite measured data
Received date: 2021-10-13
Revised date: 2021-10-27
Accepted date: 2021-12-04
Online published: 2021-12-09
介绍了X射线脉冲星序贯观测导航体制和脉冲星导航基本原理。提出了基于卫星实测数据的脉冲星导航基本观测量处理方法。针对中国首颗大型天文卫星“慧眼”(Insight-HXMT)的能粒子探测器载荷观测的原始观测数据,给出了导航观测量处理精度结果。同时将卫星精密定轨星历作为标称轨道,与X射线脉冲星导航定位结果进行对比,得出了Insight-HXMT卫星数据的X射线脉冲星导航精度约为10 km的结论。最后,针对实测数据导航结果讨论了本次试验的不足并给出了未来脉冲星导航试验的建议。
关键词: X射线脉冲星导航; 实测数据; Insight-HXMT卫星; 自主导航; 光子
张大鹏 , 呼延宗泊 , 李恒年 . 基于卫星实测数据的X射线脉冲星导航体制验证[J]. 航空学报, 2023 , 44(3) : 526510 -526510 . DOI: 10.7527/S1000-6893.2021.26510
The basic principles of X-ray pulsar-based navigation and X-ray pulsar sequential observation are introduced. An observation value processing method is proposed based on measured satellite data. Based on the original observation data received by the high energy X-ray detector in China's first large-scale astronomical satellite "Insight-HXMT", the processing accuracy results of the navigation observation value are given. At the same time, the precise orbit determination ephemeris is used as the standard orbit, and is compared with the X-ray pulsar navigation results. It is concluded that the accuracy of X-ray pulsar-based navigation of the Insight-HXMT satellite data is about 10 km. Finally, according to the navigation results of the measured data, the insufficient aspects of this experiment are discussed and future suggestions are given.
1 | DOWNS G S. Interplanetary navigation using pulsation radio sources[R]. Washington D. C.: NASA, 1974. |
2 | 李鹏飞, 徐国栋, 董立珉, 等. X射线脉冲星信号时延的实时估计方法[J]. 航空学报, 2014, 35(7): 1966-1976. |
LI P F, XU G D, DONG L M, et al. A real time estimation method of time-delay for X-ray pulsar signal[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1966-1976 (in Chinese). | |
3 | GENDREAU K. NICER: neutron star interior composition ExploreR and SEXTANT[R]. Washington D. C.: NASA, 2012. |
4 | WINTERNITZ L M B, HASSOUNEH M A, MITCHELL J W, et al. X-ray pulsar navigation algorithms and testbed for SEXTANT[C]∥2015 IEEE Aerospace Conference. Piscataway: IEEE Press, 2015: 1-14. |
5 | WINTERNITZ L B, HASSOUNEH M A, MITCHELL J W, et al. SEXTANT X-ray pulsar navigation demonstration: Additional on-orbit results[C]∥2018 SpaceOps Conference. Reston: AIAA, 2018: 2538. |
6 | SHEMAR S, FRASER G, HEIL L, et al. Feasibility and performance assessment of a practical autonomous deep space navigation system based on X-ray pulsar timing[DB/OL]. arXiv preprint: 1805.05899, 2018. |
7 | 黄良伟, 帅平, 张新源, 等. 脉冲星导航试验卫星时间数据分析与脉冲轮廓恢复[J]. 中国空间科学技术, 2017, 37(3): 1-10. |
HUANG L W, SHUAI P, ZHANG X Y, et al. XPNAV-1 Satellite timing data analysis and pulse profile recovery[J]. Chinese Space Science and Technology, 2017, 37(3): 1-10 (in Chinese). | |
8 | Institute of High Energy Physics, Chinese Academy of Sciences. AO-04 white book of insight-HXMT[R]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2021. |
9 | ZHENG S J, ZHANG S N, LU F J, et al. In-orbit demonstration of X-ray pulsar navigation with the Insight-HXMT satellite[DB/OL]. arXiv preprint: 1908.01922, 2019. |
10 | WANG Y D, ZHENG W, SUN S M. X-ray pulsar-based navigation system/Sun measurement integrated navigation method for deep space explorer[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(10): 1843-1852. |
11 | WANG Y D, ZHENG W, SUN S M, et al. Autonomous navigation method for low-thrust interplanetary vehicles[J]. Journal of Aerospace Engineering, 2016, 29(1), doi: 10.1061/(ASCE)AS.1943-5525.0000495 . |
12 | 吴亚平, 赵建军, 吴光敏, 等. X射线脉冲星导航硬件脉冲轮廓累积研究[J]. 航空学报, 2016, 37(2): 662-668. |
WU Y P, ZHAO J J, WU G M, et al. Hardware epoch superposition of X-ray pulsar-based navigation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 662-668 (in Chinese). | |
13 | WANG Y D, ZHANG W. Pulsar phase and Doppler frequency estimation for XNAV using on-orbit epoch folding[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(5): 2210-2219. |
14 | LORIMER D R, KRAMER M. Handbook of pulsar astronomy[M]. Cambridge: Cambridge University Press, 2005. |
15 | EMADZADEH A A, SPEYER J L. Navigation in space by X-ray pulsars[M]. New York: Springer New York, 2011. |
16 | 李敏, 张迎春, 耿云海, 等. 鲁棒EKF在脉冲星导航系统中的应用[J]. 航空学报, 2016, 37(4): 1305-1315. |
LI M, ZHANG Y C, GENG Y H, et al. A robust extended Kalman filter algorithm for X-ray pulsar navigation system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1305-1315 (in Chinese). | |
17 | 张大鹏. X射线脉冲星导航数据处理与验证评估技术研究[D]. 长沙: 国防科技大学, 2018: 28-30. |
ZHANG D P. X-ray pulsar-based navigation: Data processing and verification-evaluation technology[D]. Changsha: National University of Defense Technology, 2018: 28-30 (in Chinese). | |
18 | JIA S M, MA X, HUANG Y, et al. Insight-HXMT science operations[C]∥ SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 10704, Observatory Operations: Strategies, Processes, and Systems VII. Bellingham: SPIE, 2018, 10704: 510-515. |
19 | CHEN Y, CUI W W, LI W, et al. The low energy X-ray telescope (LE) onboard the Insight-HXMT astronomy satellite[J]. Science China (Physics, Mechanics & Astronomy), 2020, 63(4): 53-65. |
20 | Institute of High Energy Physics, Chinese Academy of Sciences. The HXMT data reduction guide v 2.01[M]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2019. |
/
〈 |
|
〉 |