机器人运动规划方法综述
收稿日期: 2021-10-09
修回日期: 2021-10-27
录用日期: 2021-11-18
网络出版日期: 2021-12-09
基金资助
国家自然科学基金(61690211);西北工业大学博士论文创新基金(CX2021049)
A tutorial and review on robot motion planning
Received date: 2021-10-09
Revised date: 2021-10-27
Accepted date: 2021-11-18
Online published: 2021-12-09
Supported by
National Natural Science Foundation of China(61690211);Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021049)
随着应用场景的日益复杂,机器人对旨在生成无碰撞路径(轨迹)的自主运动规划技术的需求也变得更加迫切。虽然目前已产生了大量适应于不同场景的规划算法,但如何妥善地对现有成果进行归类,并分析不同方法间的优劣异同仍是需要深入思考的问题。以此为切入点,首先,阐释运动规划的基本内涵及经典算法的关键步骤;其次,针对实时性与解路径(轨迹)品质间的矛盾,以是否考虑微分约束为标准,有层次地总结了现有的算法加速策略;最后,面向不确定性(即传感器不确定性、未来状态不确定性和环境不确定性)下的规划和智能规划提出的新需求,对运动规划领域的最新成果和发展方向进行了评述,以期为后续研究提供有益的参考。
唐永兴 , 朱战霞 , 张红文 , 罗建军 , 袁建平 . 机器人运动规划方法综述[J]. 航空学报, 2023 , 44(2) : 26495 -026495 . DOI: 10.7527/S1000-6893.2021.26495
As application scenarios become more complex, the need for autonomous motion planning techniques which aims at generating collision-free path (trajectory) becomes more urgent. Although a large number of planning algorithms adapted to different scenarios have been proposed already, how to properly classify the existing results and analyze the advantages and disadvantages of different methods is still a problem that needs in-depth consideration. In this paper, the basic connotation of motion planning and the key steps of classical algorithms are explained. Secondly, aiming at the contradiction between real-time performance and the quality of solution path (trajectory), the existing algorithm acceleration strategies are analyzed and summarized hierarchically based on whether differential constraint is considered. Finally, facing the new requirements of planning under uncertainty (i.e., sensor uncertainty, future state uncertainty and environmental uncertainty) and intelligent planning, the latest achievements and development direction in the field of motion planning are reviewed. It is expected that the review can provide ideas for future research.
1 | FARLEY K A, WILLIFORD K H, STACK K M, et al. Mars 2020 mission overview[J]. Space Science Reviews, 2020, 216(8): 1-41. |
2 | FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68(8): 1-26. |
3 | ROOT P. Fast lightweight autonomy[EB/OL]. (2018-12-13) [2021-11-27]. . |
4 | BUEHLER M, IAGNEMMA K, SINGH S AND, et al. The DARPA Urban Challenge: autonomous vehicles in city traffic[M]. Berlin: Springer, 2009. |
5 | JANAI J, GüNEY F, BEHL A, et al. Computer vision for autonomous vehicles: problems, datasets and state of the art[J]. Foundations and Trends? in Computer Graphics and Vision, 2020, 12(1-3): 1-308. |
6 | KOCHENDERFER M J. Decision making under uncertainty[M]. Cambridge: The MIT Press, 2015. |
7 | SCHWARTING W, ALONSO-MORA J, RUS D. Planning and decision-making for autonomous vehicles[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1(1): 187-210. |
8 | LAVALLE S M. Planning algorithms[M]. Cambridge: Cambridge University Press, 2006. |
9 | CHOSET H M, LYNCH K M, HUTCHINSON S, et al. Principles of robot motion[M]. Cambridge: The MIT Press, 2005. |
10 | LATOMBE J C. Robot motion planning[M]. Boston: Springer, 1991. |
11 | FRANKLIN G F, POWELL J D, EMAMI-NAEINI A. Feedback control of dynamic systems[M]. London: Pearson, 2018. |
12 | LOZANO-PEREZ T. Spatial planning: a configuration space approach[M]∥Autonomous robot vehicles. New York: Springer, 1990: 259-271. |
13 | RUSSELL S, NORVIG P. Artificial intelligence: a modern approach[M]. Upper Saddle River: Prentice Hall, 2010. |
14 | GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]∥2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2014: 2997-3004. |
15 | JANSON L, SCHMERLING E, CLARK A, et al. Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions[J]. The International Journal of Robotics Research, 2015, 34(7): 883-921. |
16 | GAMMELL J D, SRINIVASA S S, BARFOOT T D. Batch Informed Trees (BIT*): sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 3067-3074. |
17 | GAMMELL J D, BARFOOT T D, SRINIVASA S S. Batch Informed Trees (BIT*): informed asymptotically optimal anytime search[J]. The International Journal of Robotics Research, 2020, 39(5): 543-567. |
18 | ICHTER B, HARRISON J, PAVONE M. Learning sampling distributions for robot motion planning[C]∥2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2018: 7087-7094. |
19 | QURESHI A H, MIAO Y L, SIMEONOV A, et al. Motion planning networks: bridging the gap between learning-based and classical motion planners[J]. IEEE Transactions on Robotics, 2021, 37(1): 48-66. |
20 | HAUSER K, ZHOU Y L. Asymptotically optimal planning by feasible kinodynamic planning in a state-cost space[J]. IEEE Transactions on Robotics, 2016, 32(6): 1431-1443. |
21 | KLEINBORT M, GRANADOS E, SOLOVEY K, et al. Refined analysis of asymptotically-optimal kinodynamic planning in the state-cost space[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 6344-6350. |
22 | LI Y B, LITTLEFIELD Z, BEKRIS K E. Asymptotically optimal sampling-based kinodynamic planning[J]. The International Journal of Robotics Research, 2016, 35(5): 528-564. |
23 | LI L J, MIAO Y L, QURESHI A H, et al. MPC-MPNet: model-predictive motion planning networks for fast, near-optimal planning under kinodynamic constraints[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 4496-4503. |
24 | FRANCIS A, FAUST A, CHIANG H T L, et al. Long-range indoor navigation with PRM-RL[J]. IEEE Transactions on Robotics, 2020, 36(4): 1115-1134. |
25 | FAUST A, OSLUND K, RAMIREZ O, et al. PRM-RL: long-range robotic navigation tasks by combining reinforcement learning and sampling-based planning[C]∥2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2018: 5113-5120. |
26 | CHIANG H T L, HSU J, FISER M, et al. RL-RRT: kinodynamic motion planning via learning reachability estimators from RL policies[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 4298-4305. |
27 | ICHTER B, PAVONE M. Robot motion planning in learned latent spaces[J]. IEEE Robotics and Automation Letters, 2019, 4(3): 2407-2414. |
28 | QURESHI A H, DONG J G, CHOE A, et al. Neural manipulation planning on constraint manifolds[J]. IEEE Robotics and Automation Letters, 2020, 5(4): 6089-6096. |
29 | RATLIFF N, ZUCKER M, BAGNELL J A, et al. CHOMP: gradient optimization techniques for efficient motion planning[C]∥2009 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2009: 489-494. |
30 | ZUCKER M, RATLIFF N, DRAGAN A D, et al. CHOMP: Covariant Hamiltonian optimization for motion planning[J]. The International Journal of Robotics Research, 2013, 32(9-10): 1164-1193. |
31 | KALAKRISHNAN M, CHITTA S, THEODOROU E, et al. STOMP: stochastic trajectory optimization for motion planning[C]∥2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 4569-4574. |
32 | SCHULMAN J, HO J, LEE A X, et al. Finding locally optimal, collision-free trajectories with sequential convex optimization[C]∥Robotics: Science and Systems IX, 2013: 1-10. |
33 | SCHULMAN J, DUAN Y, HO J, et al. Motion planning with sequential convex optimization and convex collision checking[J]. The International Journal of Robotics Research, 2014, 33(9): 1251-1270. |
34 | MAO Y Q, SZMUK M, A?IKME?E B. Successive convexification of non-convex optimal control problems and its convergence properties[C]∥2016 IEEE 55th Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2016: 3636-3641. |
35 | MAO Y Q, SZMUK M, XU X R, et al. Successive convexification: a superlinearly convergent algorithm for non-convex optimal control problems[DB/OL]. arXiv preprint arXiv: 1804.06539v2, 2019. |
36 | BONALLI R, CAULIGI A, BYLARD A, et al. GuSTO: guaranteed sequential trajectory optimization via sequential convex programming[C]∥2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2019: 6741-6747. |
37 | LIU S K, WATTERSON M, MOHTA K, et al. Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-D complex environments[J]. IEEE Robotics and Automation Letters, 2017, 2(3): 1688-1695. |
38 | CHEN J, LIU T B, SHEN S J. Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments[C]∥2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2016: 1476-1483. |
39 | GAO F, WU W, GAO W L, et al. Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors in cluttered environments[J]. Journal of Field Robotics, 2019, 36(4): 710-733. |
40 | SILVER D, VENESS J. Monte-Carlo planning in large POMDPs[C]∥Proceedings of the 23rd International Conference on Neural Information Processing Systems, 2010: 2164-2172. |
41 | YE N, SOMANI A, HSU D, et al. DESPOT: online POMDP planning with regularization[J]. Journal of Artificial Intelligence Research, 2017, 58: 231-266. |
42 | SUNBERG Z N, KOCHENDERFER M J. Online algorithms for POMDPs with continuous state, action, and observation spaces[C]∥Twenty-Eighth International Conference on Automated Planning and Scheduling, 2018: 259-263. |
43 | PRIYADARSHINI GARG N, HSU D, SUN LEE W. DESPOT-alpha: online POMDP planning with large state and observation spaces[C]∥Robotics: Science and Systems XV, 2019: 49-58. |
44 | CHEN M, HERBERT S, HU H M, et al. FaSTrack: a modular framework for real-time motion planning and guaranteed safe tracking[DB/OL]. arXiv preprint: 2102.07039,2012. |
45 | MAJUMDAR A, TEDRAKE R. Funnel libraries for real-time robust feedback motion planning[J]. The International Journal of Robotics Research, 2017, 36(8): 947-982. |
46 | AMES A D, XU X R, GRIZZLE J W, et al. Control barrier function based quadratic programs for safety critical systems[J]. IEEE Transactions on Automatic Control, 2017, 62(8): 3861-3876. |
47 | AMES A D, COOGAN S, EGERSTEDT M, et al. Control barrier functions: theory and applications[C]∥2019 18th European Control Conference (ECC). Piscataway: IEEE Press, 2019: 3420-3431. |
48 | SINGH S, MAJUMDAR A, SLOTINE J J, et al. Robust online motion planning via contraction theory and convex optimization[C]∥2017 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2017: 5883-5890. |
49 | GONZáLEZ D, PéREZ J, MILANéS V, et al. A review of motion planning techniques for automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4): 1135-1145. |
50 | PADEN B, ?áP M, YONG S Z, et al. A survey of motion planning and control techniques for self-driving urban vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(1): 33-55. |
51 | ELBANHAWI M, SIMIC M. Sampling-based robot motion planning: a review[J]. IEEE Access, 2014, 2: 56-77. |
52 | CHAZELLE B. Approximation and decomposition of shapes[M]∥Algorithmic and geometric aspects of robotics. New York: Routledge, 2016: 161-202. |
53 | SCHWARTZ J T, SHARIR M. On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds[J]. Advances in Applied Mathematics, 1983, 4(3): 298-351. |
54 | NILSSON N J. A mobile automaton: an application of artificial intelligence techniques[R]. 1969. |
55 | ó'DúNLAING C, SHARIR M, YAP C K. Retraction: a new approach to motion-planning[C]∥Proceedings of the fifteenth annual ACM symposium on Theory of computing. New York: ACM Press, 1983: 207-220. |
56 | CANNY J. The complexity of robot motion planning[M]. Cambridge: The MIT press, 1988. |
57 | DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271. |
58 | HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. |
59 | LIKHACHEV M, GORDON G J, THRUN S. ARA*: anytime A* with provable bounds on sub-optimality[C] ∥Proceedings of 2003 Advances in Neural Information Processing Systems. Cambridge: The MIT Press, 2003: 767-774. |
60 | KOENIG S, LIKHACHEV M. D*lite[C]∥Proceedings of the Eighteenth National Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2002: 476-483. |
61 | LIKHACHEV M, FERGUSON D I, GORDON G J, et al. Anytime dynamic A*: An anytime, replanning algorithm[C]∥Proceedings of the Fifteenth International Conference on International Conference on Automated Planning and Scheduling. Menlo Park: AAAI Press, 2005: 262-271. |
62 | DANIEL K, NASH A, KOENIG S, et al. Theta*: any-angle path planning on grids[J]. Journal of Artificial Intelligence Research, 2010, 39: 533-579. |
63 | NASH A, KOENIG S, TOVEY C. Lazy theta*: any-angle path planning and path length analysis in 3D[C]∥ Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2010: 147-154. |
64 | LINDEMANN S R, LAVALLE S M. Current issues in sampling-based motion planning[C]∥The Eleventh International Symposium on Robotics Research. Berlin: Springer, 2005: 36-54. |
65 | KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4): 566-580. |
66 | KAVRAKI L E, KOLOUNTZAKIS M N, LATOMBE J C. Analysis of probabilistic roadmaps for path planning[J]. IEEE Transactions on Robotics and Automation, 1998, 14(1): 166-171. |
67 | HSU D, LATOMBE J C, MOTWANI R. Path planning in expansive configuration spaces[C]∥Proceedings of International Conference on Robotics and Automation. Piscataway: IEEE Press, 1997: 2719-2726. |
68 | BARRAQUAND J, KAVRAKI L, LATOMBE J C, et al. A random sampling scheme for path planning[J]. The International Journal of Robotics Research, 1997, 16(6): 759-774. |
69 | CHAUDHURI S, KOLTUN V. Smoothed analysis of probabilistic roadmaps[J]. Computational Geometry, 2009, 42(8): 731-747. |
70 | LAVALLE S M. Rapidly-exploring random trees: a new tool for path planning: TR 98-11[R]. 1998. |
71 | LAVALLE S M, KUFFNER J J J. Randomized kinodynamic planning[J]. The International Journal of Robotics Research, 2001, 20(5): 378-400. |
72 | LAVALLE S M, KUFFNER J J J, DONALD B R. Rapidly-exploring random trees: progress and prospects[M]∥Algorithmic and computational robotics. 2001: 303-307. |
73 | KUFFNER J J J, LAVALLE S M. RRT-connect: an efficient approach to single-query path planning[C]∥IEEE International Conference on Robotics and Automation Symposia Proceedings. Piscataway: IEEE Press, 2000: 995-1001. |
74 | BOHLIN R, KAVRAKI L E. Path planning using lazy PRM[C]∥IEEE International Conference on Robotics and Automation Symposia Proceedings. Piscataway: IEEE Press, 2000: 521-528. |
75 | SáNCHEZ G, LATOMBE J C. On delaying collision checking in PRM planning: application to multi-robot coordination[J]. The International Journal of Robotics Research, 2002, 21(1): 5-26. |
76 | GERAERTS R, OVERMARS M H. Creating high-quality paths for motion planning[J]. The International Journal of Robotics Research, 2007, 26(8): 845-863. |
77 | KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research, 2011, 30(7): 846-894. |
78 | BEKRIS K E, SHOME R. Asymptotically optimal sampling-based planners[DB/OL]. arXiv preprint arXiv:, 2019. |
79 | SOLOVEY K, SALZMAN O, HALPERIN D. New perspective on sampling-based motion planning via random geometric graphs[J]. The International Journal of Robotics Research, 2018, 37(10): 1117-1133. |
80 | SOLOVEY K, KLEINBORT M. The critical radius in sampling-based motion planning[J]. The International Journal of Robotics Research, 2020, 39(2-3): 266-285. |
81 | SOLOVEY K, JANSON L, SCHMERLING E, et al. Revisiting the asymptotic optimality of RRT[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 2189-2195. |
82 | YERSHOVA A, LAVALLE S M. Improving motion-planning algorithms by efficient nearest-neighbor searching[J]. IEEE Transactions on Robotics, 2007, 23(1): 151-157. |
83 | KUFFNER J J JR. Effective sampling and distance metrics for 3D rigid body path planning[C]∥2004 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2004: 3993-3998. |
84 | AMATO N M, BAYAZIT O B, DALE L K, et al. Choosing good distance metrics and local planners for probabilistic roadmap methods[J]. IEEE Transactions on Robotics and Automation, 2000, 16(4): 442-447. |
85 | PLAKU E, BEKRIS K E, CHEN B Y, et al. Sampling-based roadmap of trees for parallel motion planning[J]. IEEE Transactions on Robotics, 2005, 21(4): 597-608. |
86 | GERAERTS R, OVERMARS M H. A comparative study of probabilistic roadmap planners[M]∥Algorithmic foundations of robotics V. Berlin: Springer, 2004: 43-57. |
87 | TOTH C D, O'ROURKE J, GOODMAN J E, et al. Handbook of discrete and computational geometry[M]. 2017. |
88 | LAVALLE S M, BRANICKY M S, LINDEMANN S R. On the relationship between classical grid search and probabilistic roadmaps[J]. The International Journal of Robotics Research, 2004, 23(7-8): 673-692. |
89 | BRANICKY M S, LAVALLE S M, OLSON K, et al. Quasi-randomized path planning[C]∥ 2001 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2001: 1481-1487. |
90 | SUKHAREV A G. Optimal strategies of the search for an extremum[J]. USSR Computational Mathematics and Mathematical Physics, 1971, 11(4): 119-137. |
91 | JANSON L, ICHTER B, PAVONE M. Deterministic sampling-based motion planning: optimality, complexity, and performance[J]. The International Journal of Robotics Research, 2018, 37(1): 46-61. |
92 | NIEDERREITER H. Random number generation and quasi-Monte Carlo methods[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1992. |
93 | PALMIERI L, BRUNS L, MEURER M, et al. Dispertio: optimal sampling for safe deterministic motion planning[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 362-368. |
94 | HSU D, LATOMBE J C, KURNIAWATI H. On the probabilistic foundations of probabilistic roadmap planning[J]. The International Journal of Robotics Research, 2006, 25(7): 627-643. |
95 | VAN DEN BERG J P, OVERMARS M H. Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners[J]. The International Journal of Robotics Research, 2005, 24(12): 1055-1071. |
96 | HOLLEMAN C, KAVRAKI L E. A framework for using the workspace medial axis in PRM planners[C]∥2000 IEEE International Conference on Robotics and Automation Symposia Proceedings. Piscataway: IEEE Press, 2000: 1408-1413. |
97 | YANG Y D, BROCK O. Adapting the sampling distribution in PRM planners based on an approximated medial axis[C]∥2004 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2004: 4405-4410. |
98 | FOSKEY M, GARBER M, LIN M C, et al. A Voronoi-based hybrid motion planner[C]∥ 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2001: 55-60. |
99 | AMATO N M, BAYAZIT O B, DALE L K, et al. OBPRM: An obstacle-based PRM for 3D workspaces[M]∥Robotics: The Algorithmic Perspective. 1998: 165-178. |
100 | BOOR V, OVERMARS M H, VAN DER STAPPEN A F. The Gaussian sampling strategy for probabilistic roadmap planners[C]∥1999 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 1999: 1018-1023. |
101 | SIMéON T, LAUMOND J P, NISSOUX C. Visibility-based probabilistic roadmaps for motion planning[J]. Advanced Robotics, 2000, 14(6): 477-493. |
102 | HSU D, JIANG T T, REIF J, et al. The bridge test for sampling narrow passages with probabilistic roadmap planners[C]∥2003 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2003: 4420-4426. |
103 | HSU D, SANCHEZ-ANTE G, SUN Z. Hybrid PRM sampling with a cost-sensitive adaptive strategy[C]∥ 2005 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2005: 3874-3880. |
104 | YERSHOVA A, JAILLET L, SIMEON T, et al. Dynamic-domain RRTs: efficient exploration by controlling the sampling domain[C]∥2005 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2005: 3856-3861. |
105 | JAILLET L, YERSHOVA A, LA VALLE S M, et al. Adaptive tuning of the sampling domain for dynamic-domain RRTs[C]∥2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2005: 2851-2856. |
106 | BURNS B, BROCK O. Sampling-based motion planning using predictive models[C]∥2005 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2005: 3120-3125. |
107 | BURNS B, BROCK O. Toward optimal configuration space sampling[C]∥Robotics: Science and Systems I, 2005: 105-112. |
108 | BURNS B, BROCK O. Single-query motion planning with utility-guided random trees[C]∥2007 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2007: 3307-3312. |
109 | URMSON C, SIMMONS R. Approaches for heuristically biasing RRT growth[C]∥2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2003: 1178-1183. |
110 | FERGUSON D, STENTZ A. Anytime RRTs[C]∥2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2006: 5369-5375. |
111 | JAILLET L, CORTéS J, SIMéON T. Sampling-based path planning on configuration-space costmaps[J]. IEEE Transactions on Robotics, 2010, 26(4): 635-646. |
112 | KARAMAN S, WALTER M R, PEREZ A, et al. Anytime motion planning using the RRT[C]∥2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 1478-1483. |
113 | HAUSER K. Lazy collision checking in asymptotically-optimal motion planning[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 2951-2957. |
114 | AKGUN B, STILMAN M. Sampling heuristics for optimal motion planning in high dimensions[C]∥2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2011: 2640-2645. |
115 | ISLAM F, NASIR J, MALIK U, et al. RRT*-Smart: rapid convergence implementation of RRT towards optimal solution[C]∥2012 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE Press, 2012: 1651-1656. |
116 | ARSLAN O, TSIOTRAS P. Use of relaxation methods in sampling-based algorithms for optimal motion planning[C]∥2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2013: 2421-2428. |
117 | KOENIG S, LIKHACHEV M, FURCY D. Lifelong planning A* [J]. Artificial Intelligence, 2004, 155(1-2): 93-146. |
118 | GAMMELL J D, BARFOOT T D, SRINIVASA S S. Informed sampling for asymptotically optimal path planning[J]. IEEE Transactions on Robotics, 2018, 34(4): 966-984. |
119 | STRUB M P, GAMMELL J D. Advanced BIT*(ABIT*): sampling-based planning with advanced graph-search techniques[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 130-136. |
120 | STRUB M P, GAMMELL J D. Adaptively informed trees (AIT*): fast asymptotically optimal path planning through adaptive heuristics[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 3191-3198. |
121 | CHOUDHURY S, GAMMELL J D, BARFOOT T D, et al. Regionally accelerated batch informed trees (RABIT*): a framework to integrate local information into optimal path planning[C]∥2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2016: 4207-4214. |
122 | MARBLE J D, BEKRIS K E. Asymptotically near-optimal planning with probabilistic roadmap spanners[J]. IEEE Transactions on Robotics, 2013, 29(2): 432-444. |
123 | DOBSON A, BEKRIS K E. Sparse roadmap spanners for asymptotically near-optimal motion planning[J]. The International Journal of Robotics Research, 2014, 33(1): 18-47. |
124 | SALZMAN O, HALPERIN D. Asymptotically near-optimal RRT for fast, high-quality motion planning[J]. IEEE Transactions on Robotics, 2016, 32(3): 473-483. |
125 | BRUCE J, VELOSO M M. Real-time randomized path planning for robot navigation[C]∥RoboCup 2002: Robot Soccer World Cup VI. Berlin: Springer, 2003: 288-295. |
126 | FERGUSON D, KALRA N, STENTZ A. Replanning with RRTs[C]∥2006 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2006: 1243-1248. |
127 | STENTZ A. Optimal and efficient path planning for partially known environments[M]∥Intelligent unmanned ground vehicles. Boston: Springer, 1997: 203-220. |
128 | ZUCKER M, KUFFNER J, BRANICKY M. Multipartite RRTs for rapid replanning in dynamic environments[C]∥2007 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2007: 1603-1609. |
129 | VAN DEN BERG J, FERGUSON D, KUFFNER J. Anytime path planning and replanning in dynamic environments[C]∥2006 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2006: 2366-2371. |
130 | FERGUSON D, Anytime STENTZ A., dynamic planning in high-dimensional search spaces[C]∥2007 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2007: 1310-1315. |
131 | LEFèVRE S, VASQUEZ D, LAUGIER C. A survey on motion prediction and risk assessment for intelligent vehicles[J]. Robomech Journal, 2014, 1(1): 1-14. |
132 | RUDENKO A, PALMIERI L, HERMAN M, et al. Human motion trajectory prediction: a survey[J]. The International Journal of Robotics Research, 2020, 39(8): 895-935. |
133 | RIFAI S, VINCENT P, MULLER X, et al. Contractive auto-encoders: explicit invariance during feature extraction[C]∥28th International Conference on Machine Learning, 2011: 833-840. |
134 | SOHN K, YAN X C, LEE H. Learning structured output representation using deep conditional generative models[C]∥28th International Conference on Neural Information Processing Systems. Cambridge: The MIT Press, 2015: 3483-3491. |
135 | WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24. |
136 | QURESHI A H, YIP M C. Deeply informed neural sampling for robot motion planning[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 6582-6588. |
137 | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958. |
138 | WANG J K, CHI W Z, LI C M, et al. Neural RRT*: learning-based optimal path planning[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(4): 1748-1758. |
139 | ICHTER B, SCHMERLING E, LEE T W E, et al. Learned critical probabilistic roadmaps for robotic motion planning[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 9535-9541. |
140 | KUMAR R, MANDALIKA A, CHOUDHURY S, et al. LEGO: leveraging experience in roadmap generation for sampling-based planning[C]∥2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2019: 1488-1495. |
141 | KHAN A, RIBEIRO A, KUMAR V, et al. Graph neural networks for motion planning[DB/OL]. arXiv preprint:2006.06248, 2020. |
142 | LIU K, STADLER M, ROY N. Learned sampling distributions for efficient planning in hybrid geometric and object-level representations[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 9555-9562. |
143 | QURESHI A H, SIMEONOV A, BENCY M J, et al. Motion planning networks[C]∥2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2019: 2118-2124. |
144 | SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. Cambridge: The MIT Press, 2018. |
145 | HUH J, LEE D D. Efficient sampling with Q-learning to guide rapidly exploring random trees[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3868-3875. |
146 | CHEN B, DAI B, LIN Q, et al. Learning to plan in high dimensions via neural exploration-exploitation trees [DB/OL]. arXiv preprint:1903.00070, 2019. |
147 | TAMAR A, WU Y, THOMAS G, et al. Value iteration networks[DB/OL]. arXiv preprint:1602.02867, 2016. |
148 | BHARDWAJ M, CHOUDHURY S, BOOTS B, et al. Leveraging experience in lazy search[C]∥Robotics: Science and Systems XV, 2019: 464-472. |
149 | CHOUDHURY S, BHARDWAJ M, ARORA S, et al. Data-driven planning via imitation learning[J]. The International Journal of Robotics Research, 2018, 37(13-14): 1632-1672. |
150 | ZHANG C, HUH J, LEE D D. Learning implicit sampling distributions for motion planning[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 3654-3661. |
151 | MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]∥2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 2520-2525. |
152 | RICHTER C, BRY A, ROY N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments[M]∥Robotics Research. Cham: Springer, 2016: 649-666. |
153 | DONALD B, XAVIER P, CANNY J, et al. Kinodynamic motion planning[J]. Journal of the ACM, 1993, 40(5): 1048-1066. |
154 | PONTRYAGIN L S. Mathematical theory of optimal processes[M]. London: Routledge, 2018. |
155 | HSU D, KINDEL R, LATOMBE J C, et al. Randomized kinodynamic motion planning with moving obstacles[J]. The International Journal of Robotics Research, 2002, 21(3): 233-255. |
156 | KIM J, ESPOSITO J M, KUMAR V. An RRT-based algorithm for testing and validating multi-robot controllers[C]∥Robotics: Science and Systems I, 2005: 249-256. |
157 | JAILLET L, HOFFMAN J, VAN DEN BERG J, et al. EG-RRT: Environment-guided random trees for kinodynamic motion planning with uncertainty and obstacles[C]∥2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2011: 2646-2652. |
158 | FRAZZOLI E, DAHLEH M A, FERON E. Real-time motion planning for agile autonomous vehicles[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(1): 116-129. |
159 | LEWIS F L, VRABIE D L, SYRMOS V L. Optimal control[M]. Hoboken: John Wiley & Sons, Inc, 2012. |
160 | GLASSMAN E, TEDRAKE R. A quadratic regulator-based heuristic for rapidly exploring state space[C]∥2010 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2010: 5021-5028. |
161 | CHENG P, LAVALLE S M. Resolution complete rapidly-exploring random trees[C]∥2002 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2002: 267-272. |
162 | CHENG P, LAVALLE S M. Reducing metric sensitivity in randomized trajectory design[C]∥2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2001: 43-48. |
163 | KALISIAK M, VAN DE PANNE M. RRT-blossom: RRT with a local flood-fill behavior[C]∥2006 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2006: 1237-1242. |
164 | SHKOLNIK A, WALTER M, TEDRAKE R. Reachability-guided sampling for planning under differential constraints[C]∥2009 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2009: 2859-2865. |
165 | LADD A M, KAVRAKI L E. Fast tree-based exploration of state space for robots with dynamics[M]∥Algorithmic Foundations of Robotics VI. Berlin: Springer, 2004: 297-312. |
166 | LADD A M, KAVRAKI L E. Motion planning in the presence of drift, underactuation and discrete system changes[C]∥Robotics: Science and Systems I, 2005: 233-240. |
167 | BEKRIS K E, KAVRAKI L E. Greedy but safe replanning under kinodynamic constraints[C]∥2007 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2007: 704-710. |
168 | ?UCAN I A, KAVRAKI L E. Kinodynamic motion planning by interior-exterior cell exploration[M]∥Algorithmic Foundation of Robotics VIII. Berlin: Springer, 2010: 449-464. |
169 | SUCAN I A, KAVRAKI L E. A sampling-based tree planner for systems with complex dynamics[J]. IEEE Transactions on Robotics, 2012, 28(1): 116-131. |
170 | ALLEN R E, PAVONE M. A real-time framework for kinodynamic planning in dynamic environments with application to quadrotor obstacle avoidance[J]. Robotics and Autonomous Systems, 2019, 115: 174-193. |
171 | BHARATHEESHA M, CAARLS W, WOLFSLAG W J, et al. Distance metric approximation for state-space RRTs using supervised learning[C]∥2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2014: 252-257. |
172 | PALMIERI L, ARRAS K O. Distance metric learning for RRT-based motion planning with constant-time inference[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 637-643. |
173 | WOLFSLAG W J, BHARATHEESHA M, MOERLAND T M, et al. RRT-CoLearn: towards kinodynamic planning without numerical trajectory optimization[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1655-1662. |
174 | SLOTINE J J E, LI W. Applied nonlinear control[M]. 1991. |
175 | KARAMAN S, FRAZZOLI E. Optimal kinodynamic motion planning using incremental sampling-based methods[C]∥49th IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2010: 7681-7687. |
176 | OTTE M, FRAZZOLI E. RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning[J]. The International Journal of Robotics Research, 2016, 35(7): 797-822. |
177 | PEREZ A, PLATT R, KONIDARIS G, et al. LQR-RRT*: optimal sampling-based motion planning with automatically derived extension heuristics[C]∥2012 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2012: 2537-2542. |
178 | WEBB D J, VAN DEN BERG J. Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics[C]∥2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2013: 5054-5061. |
179 | GORETKIN G, PEREZ A, PLATT R, et al. Optimal sampling-based planning for linear-quadratic kinodynamic systems[C]∥2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2013: 2429-2436. |
180 | XIE C, VAN DEN BERG J, PATIL S, et al. Toward asymptotically optimal motion planning for kinodynamic systems using a two-point boundary value problem solver[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 4187-4194. |
181 | NOCEDAL J, WRIGHT S. Numerical optimization[M]. New York: Springer, 2006. |
182 | SCHMERLING E, JANSON L, PAVONE M. Optimal sampling-based motion planning under differential constraints: The drift case with linear affine dynamics[C]∥2015 54th IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2015: 2574-2581. |
183 | KUNZ T, THOMAZ A, CHRISTENSEN H. Hierarchical rejection sampling for informed kinodynamic planning in high-dimensional spaces[C]∥2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2016: 89-96. |
184 | YI D Q, THAKKER R, GULINO C, et al. Generalizing informed sampling for asymptotically-optimal sampling-based kinodynamic planning via Markov chain Monte Carlo[C]∥2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2018: 7063-7070. |
185 | JOSHI S S, HUTCHINSON S, TSIOTRAS P. TIE: time-informed exploration for robot motion planning[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3585-3591. |
186 | KURZHANSKIY A A, VARAIYA P. Ellipsoidal toolbox (ET)[C]∥Proceedings of the 45th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2006: 1498-1503. |
187 | LITTLEFIELD Z, BEKRIS K E. Efficient and asymptotically optimal kinodynamic motion planning via dominance-informed regions[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 1-9. |
188 | LITTLEFIELD Z, BEKRIS K E. Informed asymptotically near-optimal planning for field robots with dynamics[C]∥Field and Service Robotics. Cham: Springer, 2018: 449-463. |
189 | PIVTORAIKO M, KNEPPER R A, KELLY A. Differentially constrained mobile robot motion planning in state lattices[J]. Journal of Field Robotics, 2009, 26(3): 308-333. |
190 | LIKHACHEV M, FERGUSON D. Planning long dynamically feasible maneuvers for autonomous vehicles[J]. The International Journal of Robotics Research, 2009, 28(8): 933-945. |
191 | HUH J, XING G, WANG Z Y, et al. Learning to generate cost-to-go functions for efficient motion planning[M]∥Experimental robotics. Cham: Springer, 2021: 555-565. |
192 | HUH J, LEE D D, ISLER V. Learning Continuous Cost-to-Go Functions for Non-holonomic Systems[DB/OL]. arXiv preprint:2103.11168, 2021. |
193 | LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[DB/OL]. arXiv preprint:1509.02971, 2015. |
194 | FAUST A, RUYMGAART P, SALMAN M, et al. Continuous action reinforcement learning for control-affine systems with unknown dynamics[J]. IEEE/CAA Journal of Automatica Sinica, 2014, 1(3): 323-336. |
195 | BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(2): 193-207. |
196 | KELLY M. An introduction to trajectory optimization: how to do your own direct collocation[J]. SIAM Review, 2017, 59(4): 849-904. |
197 | MAYNE D Q, RAWLINGS J B, RAO C V, et al. Constrained model predictive control: Stability and optimality[J]. Automatica, 2000, 36(6): 789-814. |
198 | MAYNE D Q. Model predictive control: Recent developments and future promise[J]. Automatica, 2014, 50(12): 2967-2986. |
199 | KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[M]∥Autonomous robot vehicles. New York: Springer, 1986: 396-404. |
200 | GILL P E, MURRAY W, SAUNDERS M A. SNOPT: an SQP algorithm for large-scale constrained optimization[J]. SIAM Review, 2005, 47(1): 99-131. |
201 | W?CHTER A, BIEGLER L T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[J]. Mathematical Programming, 2006, 106(1): 25-57. |
202 | BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge: Cambridge University Press, 2004. |
203 | MALYUTA D, REYNOLDS T P, SZMUK M, et al. Convex optimization for trajectory generation[DB/OL]. arXiv preprint:2106.09125, 2021. |
204 | ZHANG X J, LINIGER A, BORRELLI F. Optimization-based collision avoidance[J]. IEEE Transactions on Control Systems Technology, 2021, 29(3): 972-983. |
205 | DEITS R, TEDRAKE R. Efficient mixed-integer planning for UAVs in cluttered environments[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 42-49. |
206 | BLEKHERMAN G, PARRILO P A, THOMAS R R. Semidefinite optimization and convex algebraic geometry[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2012. |
207 | HARABOR D, GRASTIEN A. Online graph pruning for pathfinding on grid maps[C]∥Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011: 1114-1119. |
208 | THRUN S, BURGARD W, FOX D. Probabilistic robotics[M]. Cambridge: The MIT press, 2005. |
209 | PINEAU J, GORDON G, THRUN S. Point-based value iteration: an anytime algorithm for POMDPs[C]∥Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, 2003: 1025-1032. |
210 | SMITH T, SIMMONS R. Point-based POMDP algorithms: improved analysis and implementation[DB/OL]. arXiv preprint:1207.1412, 2012. |
211 | SPAAN M T J, VLASSIS N. Perseus: randomized point-based value iteration for POMDPs[J]. Journal of Artificial Intelligence Research, 2005, 24: 195-220. |
212 | KURNIAWATI H, HSU D, LEE W S. SARSOP: efficient point-based POMDP planning by approximating optimally reachable belief spaces[M]∥Robotics: Science and Systems IV, 2009: 65-72. |
213 | ROSS S, PINEAU J, PAQUET S, et al. Online planning algorithms for POMDPs[J]. Journal of Artificial Intelligence Research, 2008, 32: 663-704. |
214 | KURNIAWATI H, YADAV V. An online POMDP solver for uncertainty planning in dynamic environment[M]∥Robotics Research. Cham: Springer, 2016: 611-629. |
215 | BROWNE C B, POWLEY E, WHITEHOUSE D, et al. A survey of Monte Carlo tree search methods[J]. IEEE Transactions on Computational Intelligence and AI in Games, 2012, 4(1): 1-43. |
216 | CAI P P, LUO Y F, HSU D, et al. HyP-DESPOT: a hybrid parallel algorithm for online planning under uncertainty[J]. The International Journal of Robotics Research, 2021, 40(2-3): 558-573. |
217 | BAI H, HSU D, LEE W S, et al. Monte Carlo value iteration for continuous-state POMDPs[M]∥Algorithmic Foundations of Robotics IX. Berlin: Springer, 2010: 175-191. |
218 | BAI H Y, HSU D, LEE W S. Integrated perception and planning in the continuous space: a POMDP approach[J]. The International Journal of Robotics Research, 2014, 33(9): 1288-1302. |
219 | PORTA J M, VLASSIS N, SPAAN M T J, et al. Point-based value iteration for continuous POMDPs[J]. Journal of Machine Learning Research, 2006, 7: 2329-2367. |
220 | HOEY J, POUPART P. Solving POMDPs with continuous or large discrete observation spaces[C]∥Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence. Hong Kong: Professional Book Center, 2005: 1332-1338. |
221 | SEILER K M, KURNIAWATI H, SINGH S P N. An online and approximate solver for POMDPs with continuous action space[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 2290-2297. |
222 | PRENTICE S, ROY N. The belief roadmap: efficient planning in belief space by factoring the covariance[J]. The International Journal of Robotics Research, 2009, 28(11-12): 1448-1465. |
223 | BRY A, ROY N. Rapidly-exploring random belief trees for motion planning under uncertainty[C]∥2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 723-730. |
224 | VAN DEN BERG J, ABBEEL P, GOLDBERG K. LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information[J]. The International Journal of Robotics Research, 2011, 30(7): 895-913. |
225 | AGHA-MOHAMMADI A A, CHAKRAVORTY S, AMATO N M. FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements[J]. The International Journal of Robotics Research, 2014, 33(2): 268-304. |
226 | RAWLINGS J B, MAYNE D Q, DIEHL M. Model predictive control: theory, computation, and design[M]. Madison: Nob Hill Publishing, 2017. |
227 | SCOKAERT P O M, MAYNE D Q. Min-max feedback model predictive control for constrained linear systems[J]. IEEE Transactions on Automatic Control, 1998, 43(8): 1136-1142. |
228 | RAKOVIC S V, KERRIGAN E C, KOURAMAS K I, et al. Invariant approximations of the minimal robust positively invariant set[J]. IEEE Transactions on Automatic Control, 2005, 50(3): 406-410. |
229 | MAYNE D Q, SERON M M, RAKOVI? S V. Robust model predictive control of constrained linear systems with bounded disturbances[J]. Automatica, 2005, 41(2): 219-224. |
230 | RAKOVI? S V, KOUVARITAKIS B, FINDEISEN R, et al. Homothetic tube model predictive control[J]. Automatica, 2012, 48(8): 1631-1638. |
231 | RAKOVIC S V, KOUVARITAKIS B, CANNON M, et al. Parameterized tube model predictive control[J]. IEEE Transactions on Automatic Control, 2012, 57(11): 2746-2761. |
232 | RAKOVI? S V, LEVINE W S, A?IKMESE B. Elastic tube model predictive control[C]∥2016 American Control Conference (ACC). Piscataway: IEEE Press, 2016: 3594-3599. |
233 | ALTHOFF M, STURSBERG O, BUSS M. Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization[C]∥2008 47th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2008: 4042-4048. |
234 | ALTHOFF M, DOLAN J M. Online verification of automated road vehicles using reachability analysis[J]. IEEE Transactions on Robotics, 2014, 30(4): 903-918. |
235 | ALTHOFF D, ALTHOFF M, SCHERER S. Online safety verification of trajectories for unmanned flight with offline computed robust invariant sets[C]∥2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2015: 3470-3477. |
236 | MITCHELL I M, BAYEN A M, TOMLIN C J. A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games[J]. IEEE Transactions on Automatic Control, 2005, 50(7): 947-957. |
237 | OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces[M]. New York: Springer New York, 2003. |
238 | HERBERT S L, CHEN M, HAN S, et al. FaSTrack: a modular framework for fast and guaranteed safe motion planning[C]∥2017 IEEE 56th Annual Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2017: 1517-1522. |
239 | SINGH S, CHEN M, HERBERT S L, et al. Robust tracking with model mismatch for fast and safe planning: an SOS optimization approach[DB/OL]. arXiv preprint:1808.00649, 2018. |
240 | BANSAL S, CHEN M, HERBERT S, et al. Hamilton-Jacobi reachability: a brief overview and recent advances[C]∥2017 IEEE 56th Annual Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2017: 2242-2253. |
241 | CHEN M, HERBERT S L, VASHISHTHA M S, et al. Decomposition of reachable sets and tubes for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2018, 63(11): 3675-3688. |
242 | HERBERT S L, BANSAL S, GHOSH S, et al. Reachability-based safety guarantees using efficient initializations[C]∥2019 IEEE 58th Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2019: 4810-4816. |
243 | LEW T, PAVONE M. Sampling-based reachability analysis: A random set theory approach with adversarial sampling[DB/OL]. arXiv preprint:2008.10180, 2020. |
244 | BANSAL S, TOMLIN C J. DeepReach: a deep learning approach to high-dimensional reachability[C]∥2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2021: 1817-1824. |
245 | FISAC J F, LUGOVOY N F, RUBIES-ROYO V, et al. Bridging Hamilton-Jacobi safety analysis and reinforcement learning[C]∥2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2019: 8550-8556. |
246 | DARBON J, LANGLOIS G P, MENG T W. Overcoming the curse of dimensionality for some Hamilton-Jacobi partial differential equations via neural network architectures[J]. Research in the Mathematical Sciences, 2020, 7(3): 1-50. |
247 | KHALIL H K, GRIZZLE J W. Nonlinear systems[M]. 2002. |
248 | TEDRAKE R, MANCHESTER I R, TOBENKIN M, et al. LQR-trees: feedback motion planning via sums-of-squares verification[J]. The International Journal of Robotics Research, 2010, 29(8): 1038-1052. |
249 | WANG L, AMES A D, EGERSTEDT M. Safety barrier certificates for collisions-free multirobot systems[J]. IEEE Transactions on Robotics, 2017, 33(3): 661-674. |
250 | LOHMILLER W, SLOTINE J J E. On contraction analysis for non-linear systems[J]. Automatica, 1998, 34(6): 683-696. |
251 | MANCHESTER I R, SLOTINE J J E. Control contraction metrics: convex and intrinsic criteria for nonlinear feedback design[J]. IEEE Transactions on Automatic Control, 2017, 62(6): 3046-3053. |
252 | LUO Y F, BAI H Y, HSU D, et al. Importance sampling for online planning under uncertainty[J]. The International Journal of Robotics Research, 2019, 38(2-3): 162-181. |
253 | HEWING L, WABERSICH K P, MENNER M, et al. Learning-based model predictive control: toward safe learning in control[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2020, 3(1): 269-296. |
254 | FRIDOVICH-KEIL D, BAJCSY A, FISAC J F, et al. Confidence-aware motion prediction for real-time collision avoidance1[J]. The International Journal of Robotics Research, 2020, 39(2-3): 250-265. |
255 | GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning[C]∥Proceedings of the 33rd International Conference on International Conference on Machine Learning, 2016: 1050-1059. |
/
〈 |
|
〉 |