综述

机器人运动规划方法综述

  • 唐永兴 ,
  • 朱战霞 ,
  • 张红文 ,
  • 罗建军 ,
  • 袁建平
展开
  • 1.西北工业大学 航天学院,西安 710072
    2.航天飞行动力学技术国家级重点实验室,西安 710072
    3.之江实验室,杭州 311121

收稿日期: 2021-10-09

  修回日期: 2021-10-27

  录用日期: 2021-11-18

  网络出版日期: 2021-12-09

基金资助

国家自然科学基金(61690211);西北工业大学博士论文创新基金(CX2021049)

A tutorial and review on robot motion planning

  • Yongxing TANG ,
  • Zhanxia ZHU ,
  • Hongwen ZHANG ,
  • Jianjun LUO ,
  • Jianping YUAN
Expand
  • 1.School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China
    2.National Key Laboratory of Aerospace Flight Dynamics,Xi’an 710072,China
    3.Zhejiang Lab,Hangzhou 311121,China

Received date: 2021-10-09

  Revised date: 2021-10-27

  Accepted date: 2021-11-18

  Online published: 2021-12-09

Supported by

National Natural Science Foundation of China(61690211);Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2021049)

摘要

随着应用场景的日益复杂,机器人对旨在生成无碰撞路径(轨迹)的自主运动规划技术的需求也变得更加迫切。虽然目前已产生了大量适应于不同场景的规划算法,但如何妥善地对现有成果进行归类,并分析不同方法间的优劣异同仍是需要深入思考的问题。以此为切入点,首先,阐释运动规划的基本内涵及经典算法的关键步骤;其次,针对实时性与解路径(轨迹)品质间的矛盾,以是否考虑微分约束为标准,有层次地总结了现有的算法加速策略;最后,面向不确定性(即传感器不确定性、未来状态不确定性和环境不确定性)下的规划和智能规划提出的新需求,对运动规划领域的最新成果和发展方向进行了评述,以期为后续研究提供有益的参考。

本文引用格式

唐永兴 , 朱战霞 , 张红文 , 罗建军 , 袁建平 . 机器人运动规划方法综述[J]. 航空学报, 2023 , 44(2) : 26495 -026495 . DOI: 10.7527/S1000-6893.2021.26495

Abstract

As application scenarios become more complex, the need for autonomous motion planning techniques which aims at generating collision-free path (trajectory) becomes more urgent. Although a large number of planning algorithms adapted to different scenarios have been proposed already, how to properly classify the existing results and analyze the advantages and disadvantages of different methods is still a problem that needs in-depth consideration. In this paper, the basic connotation of motion planning and the key steps of classical algorithms are explained. Secondly, aiming at the contradiction between real-time performance and the quality of solution path (trajectory), the existing algorithm acceleration strategies are analyzed and summarized hierarchically based on whether differential constraint is considered. Finally, facing the new requirements of planning under uncertainty (i.e., sensor uncertainty, future state uncertainty and environmental uncertainty) and intelligent planning, the latest achievements and development direction in the field of motion planning are reviewed. It is expected that the review can provide ideas for future research.

参考文献

1 FARLEY K A, WILLIFORD K H, STACK K M, et al. Mars 2020 mission overview[J]. Space Science Reviews2020216(8): 1-41.
2 FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences201468(8): 1-26.
3 ROOT P. Fast lightweight autonomy[EB/OL]. (2018-12-13) [2021-11-27]. .
4 BUEHLER M, IAGNEMMA K, SINGH S AND, et al. The DARPA Urban Challenge: autonomous vehicles in city traffic[M]. Berlin: Springer, 2009.
5 JANAI J, GüNEY F, BEHL A, et al. Computer vision for autonomous vehicles: problems, datasets and state of the art[J]. Foundations and Trends? in Computer Graphics and Vision202012(1-3): 1-308.
6 KOCHENDERFER M J. Decision making under uncertainty[M]. Cambridge: The MIT Press, 2015.
7 SCHWARTING W, ALONSO-MORA J, RUS D. Planning and decision-making for autonomous vehicles[J]. Annual Review of Control, Robotics, and Autonomous Systems20181(1): 187-210.
8 LAVALLE S M. Planning algorithms[M]. Cambridge: Cambridge University Press, 2006.
9 CHOSET H M, LYNCH K M, HUTCHINSON S, et al. Principles of robot motion[M]. Cambridge: The MIT Press, 2005.
10 LATOMBE J C. Robot motion planning[M]. Boston: Springer, 1991.
11 FRANKLIN G F, POWELL J D, EMAMI-NAEINI A. Feedback control of dynamic systems[M]. London: Pearson, 2018.
12 LOZANO-PEREZ T. Spatial planning: a configuration space approach[M]∥Autonomous robot vehicles. New York: Springer, 1990: 259-271.
13 RUSSELL S, NORVIG P. Artificial intelligence: a modern approach[M]. Upper Saddle River: Prentice Hall, 2010.
14 GAMMELL J D, SRINIVASA S S, BARFOOT T D. Informed RRT*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[C]∥2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2014: 2997-3004.
15 JANSON L, SCHMERLING E, CLARK A, et al. Fast marching tree: a fast marching sampling-based method for optimal motion planning in many dimensions[J]. The International Journal of Robotics Research201534(7): 883-921.
16 GAMMELL J D, SRINIVASA S S, BARFOOT T D. Batch Informed Trees (BIT*): sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 3067-3074.
17 GAMMELL J D, BARFOOT T D, SRINIVASA S S. Batch Informed Trees (BIT*): informed asymptotically optimal anytime search[J]. The International Journal of Robotics Research202039(5): 543-567.
18 ICHTER B, HARRISON J, PAVONE M. Learning sampling distributions for robot motion planning[C]∥2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2018: 7087-7094.
19 QURESHI A H, MIAO Y L, SIMEONOV A, et al. Motion planning networks: bridging the gap between learning-based and classical motion planners[J]. IEEE Transactions on Robotics202137(1): 48-66.
20 HAUSER K, ZHOU Y L. Asymptotically optimal planning by feasible kinodynamic planning in a state-cost space[J]. IEEE Transactions on Robotics201632(6): 1431-1443.
21 KLEINBORT M, GRANADOS E, SOLOVEY K, et al. Refined analysis of asymptotically-optimal kinodynamic planning in the state-cost space[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 6344-6350.
22 LI Y B, LITTLEFIELD Z, BEKRIS K E. Asymptotically optimal sampling-based kinodynamic planning[J]. The International Journal of Robotics Research201635(5): 528-564.
23 LI L J, MIAO Y L, QURESHI A H, et al. MPC-MPNet: model-predictive motion planning networks for fast, near-optimal planning under kinodynamic constraints[J]. IEEE Robotics and Automation Letters20216(3): 4496-4503.
24 FRANCIS A, FAUST A, CHIANG H T L, et al. Long-range indoor navigation with PRM-RL[J]. IEEE Transactions on Robotics202036(4): 1115-1134.
25 FAUST A, OSLUND K, RAMIREZ O, et al. PRM-RL: long-range robotic navigation tasks by combining reinforcement learning and sampling-based planning[C]∥2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2018: 5113-5120.
26 CHIANG H T L, HSU J, FISER M, et al. RL-RRT: kinodynamic motion planning via learning reachability estimators from RL policies[J]. IEEE Robotics and Automation Letters20194(4): 4298-4305.
27 ICHTER B, PAVONE M. Robot motion planning in learned latent spaces[J]. IEEE Robotics and Automation Letters20194(3): 2407-2414.
28 QURESHI A H, DONG J G, CHOE A, et al. Neural manipulation planning on constraint manifolds[J]. IEEE Robotics and Automation Letters20205(4): 6089-6096.
29 RATLIFF N, ZUCKER M, BAGNELL J A, et al. CHOMP: gradient optimization techniques for efficient motion planning[C]∥2009 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2009: 489-494.
30 ZUCKER M, RATLIFF N, DRAGAN A D, et al. CHOMP: Covariant Hamiltonian optimization for motion planning[J]. The International Journal of Robotics Research201332(9-10): 1164-1193.
31 KALAKRISHNAN M, CHITTA S, THEODOROU E, et al. STOMP: stochastic trajectory optimization for motion planning[C]∥2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 4569-4574.
32 SCHULMAN J, HO J, LEE A X, et al. Finding locally optimal, collision-free trajectories with sequential convex optimization[C]∥Robotics: Science and Systems IX, 2013: 1-10.
33 SCHULMAN J, DUAN Y, HO J, et al. Motion planning with sequential convex optimization and convex collision checking[J]. The International Journal of Robotics Research201433(9): 1251-1270.
34 MAO Y Q, SZMUK M, A?IKME?E B. Successive convexification of non-convex optimal control problems and its convergence properties[C]∥2016 IEEE 55th Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2016: 3636-3641.
35 MAO Y Q, SZMUK M, XU X R, et al. Successive convexification: a superlinearly convergent algorithm for non-convex optimal control problems[DB/OL]. arXiv preprint arXiv: 1804.06539v2, 2019.
36 BONALLI R, CAULIGI A, BYLARD A, et al. GuSTO: guaranteed sequential trajectory optimization via sequential convex programming[C]∥2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2019: 6741-6747.
37 LIU S K, WATTERSON M, MOHTA K, et al. Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-D complex environments[J]. IEEE Robotics and Automation Letters20172(3): 1688-1695.
38 CHEN J, LIU T B, SHEN S J. Online generation of collision-free trajectories for quadrotor flight in unknown cluttered environments[C]∥2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2016: 1476-1483.
39 GAO F, WU W, GAO W L, et al. Flying on point clouds: Online trajectory generation and autonomous navigation for quadrotors in cluttered environments[J]. Journal of Field Robotics201936(4): 710-733.
40 SILVER D, VENESS J. Monte-Carlo planning in large POMDPs[C]∥Proceedings of the 23rd International Conference on Neural Information Processing Systems, 2010: 2164-2172.
41 YE N, SOMANI A, HSU D, et al. DESPOT: online POMDP planning with regularization[J]. Journal of Artificial Intelligence Research201758: 231-266.
42 SUNBERG Z N, KOCHENDERFER M J. Online algorithms for POMDPs with continuous state, action, and observation spaces[C]∥Twenty-Eighth International Conference on Automated Planning and Scheduling, 2018: 259-263.
43 PRIYADARSHINI GARG N, HSU D, SUN LEE W. DESPOT-alpha: online POMDP planning with large state and observation spaces[C]∥Robotics: Science and Systems XV, 2019: 49-58.
44 CHEN M, HERBERT S, HU H M, et al. FaSTrack: a modular framework for real-time motion planning and guaranteed safe tracking[DB/OL]. arXiv preprint: 2102.07039,2012.
45 MAJUMDAR A, TEDRAKE R. Funnel libraries for real-time robust feedback motion planning[J]. The International Journal of Robotics Research201736(8): 947-982.
46 AMES A D, XU X R, GRIZZLE J W, et al. Control barrier function based quadratic programs for safety critical systems[J]. IEEE Transactions on Automatic Control201762(8): 3861-3876.
47 AMES A D, COOGAN S, EGERSTEDT M, et al. Control barrier functions: theory and applications[C]∥2019 18th European Control Conference (ECC). Piscataway: IEEE Press, 2019: 3420-3431.
48 SINGH S, MAJUMDAR A, SLOTINE J J, et al. Robust online motion planning via contraction theory and convex optimization[C]∥2017 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2017: 5883-5890.
49 GONZáLEZ D, PéREZ J, MILANéS V, et al. A review of motion planning techniques for automated vehicles[J]. IEEE Transactions on Intelligent Transportation Systems201617(4): 1135-1145.
50 PADEN B, ?áP M, YONG S Z, et al. A survey of motion planning and control techniques for self-driving urban vehicles[J]. IEEE Transactions on Intelligent Vehicles20161(1): 33-55.
51 ELBANHAWI M, SIMIC M. Sampling-based robot motion planning: a review[J]. IEEE Access20142: 56-77.
52 CHAZELLE B. Approximation and decomposition of shapes[M]∥Algorithmic and geometric aspects of robotics. New York: Routledge, 2016: 161-202.
53 SCHWARTZ J T, SHARIR M. On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds[J]. Advances in Applied Mathematics19834(3): 298-351.
54 NILSSON N J. A mobile automaton: an application of artificial intelligence techniques[R]. 1969.
55 ó'DúNLAING C, SHARIR M, YAP C K. Retraction: a new approach to motion-planning[C]∥Proceedings of the fifteenth annual ACM symposium on Theory of computing. New York: ACM Press, 1983: 207-220.
56 CANNY J. The complexity of robot motion planning[M]. Cambridge: The MIT press, 1988.
57 DIJKSTRA E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik19591(1): 269-271.
58 HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics19684(2): 100-107.
59 LIKHACHEV M, GORDON G J, THRUN S. ARA*: anytime A* with provable bounds on sub-optimality[C] ∥Proceedings of 2003 Advances in Neural Information Processing Systems. Cambridge: The MIT Press, 2003: 767-774.
60 KOENIG S, LIKHACHEV M. D*lite[C]∥Proceedings of the Eighteenth National Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2002: 476-483.
61 LIKHACHEV M, FERGUSON D I, GORDON G J, et al. Anytime dynamic A*: An anytime, replanning algorithm[C]∥Proceedings of the Fifteenth International Conference on International Conference on Automated Planning and Scheduling. Menlo Park: AAAI Press, 2005: 262-271.
62 DANIEL K, NASH A, KOENIG S, et al. Theta*: any-angle path planning on grids[J]. Journal of Artificial Intelligence Research201039: 533-579.
63 NASH A, KOENIG S, TOVEY C. Lazy theta*: any-angle path planning and path length analysis in 3D[C]∥ Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2010: 147-154.
64 LINDEMANN S R, LAVALLE S M. Current issues in sampling-based motion planning[C]∥The Eleventh International Symposium on Robotics Research. Berlin: Springer, 2005: 36-54.
65 KAVRAKI L E, SVESTKA P, LATOMBE J C, et al. Probabilistic roadmaps for path planning in high-dimensional configuration spaces[J]. IEEE Transactions on Robotics and Automation199612(4): 566-580.
66 KAVRAKI L E, KOLOUNTZAKIS M N, LATOMBE J C. Analysis of probabilistic roadmaps for path planning[J]. IEEE Transactions on Robotics and Automation199814(1): 166-171.
67 HSU D, LATOMBE J C, MOTWANI R. Path planning in expansive configuration spaces[C]∥Proceedings of International Conference on Robotics and Automation. Piscataway: IEEE Press, 1997: 2719-2726.
68 BARRAQUAND J, KAVRAKI L, LATOMBE J C, et al. A random sampling scheme for path planning[J]. The International Journal of Robotics Research199716(6): 759-774.
69 CHAUDHURI S, KOLTUN V. Smoothed analysis of probabilistic roadmaps[J]. Computational Geometry200942(8): 731-747.
70 LAVALLE S M. Rapidly-exploring random trees: a new tool for path planning: TR 98-11[R]. 1998.
71 LAVALLE S M, KUFFNER J J J. Randomized kinodynamic planning[J]. The International Journal of Robotics Research200120(5): 378-400.
72 LAVALLE S M, KUFFNER J J J, DONALD B R. Rapidly-exploring random trees: progress and prospects[M]∥Algorithmic and computational robotics. 2001: 303-307.
73 KUFFNER J J J, LAVALLE S M. RRT-connect: an efficient approach to single-query path planning[C]∥IEEE International Conference on Robotics and Automation Symposia Proceedings. Piscataway: IEEE Press, 2000: 995-1001.
74 BOHLIN R, KAVRAKI L E. Path planning using lazy PRM[C]∥IEEE International Conference on Robotics and Automation Symposia Proceedings. Piscataway: IEEE Press, 2000: 521-528.
75 SáNCHEZ G, LATOMBE J C. On delaying collision checking in PRM planning: application to multi-robot coordination[J]. The International Journal of Robotics Research200221(1): 5-26.
76 GERAERTS R, OVERMARS M H. Creating high-quality paths for motion planning[J]. The International Journal of Robotics Research200726(8): 845-863.
77 KARAMAN S, FRAZZOLI E. Sampling-based algorithms for optimal motion planning[J]. The International Journal of Robotics Research201130(7): 846-894.
78 BEKRIS K E, SHOME R. Asymptotically optimal sampling-based planners[DB/OL]. arXiv preprint arXiv:, 2019.
79 SOLOVEY K, SALZMAN O, HALPERIN D. New perspective on sampling-based motion planning via random geometric graphs[J]. The International Journal of Robotics Research201837(10): 1117-1133.
80 SOLOVEY K, KLEINBORT M. The critical radius in sampling-based motion planning[J]. The International Journal of Robotics Research202039(2-3): 266-285.
81 SOLOVEY K, JANSON L, SCHMERLING E, et al. Revisiting the asymptotic optimality of RRT[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 2189-2195.
82 YERSHOVA A, LAVALLE S M. Improving motion-planning algorithms by efficient nearest-neighbor searching[J]. IEEE Transactions on Robotics200723(1): 151-157.
83 KUFFNER J J JR. Effective sampling and distance metrics for 3D rigid body path planning[C]∥2004 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2004: 3993-3998.
84 AMATO N M, BAYAZIT O B, DALE L K, et al. Choosing good distance metrics and local planners for probabilistic roadmap methods[J]. IEEE Transactions on Robotics and Automation200016(4): 442-447.
85 PLAKU E, BEKRIS K E, CHEN B Y, et al. Sampling-based roadmap of trees for parallel motion planning[J]. IEEE Transactions on Robotics200521(4): 597-608.
86 GERAERTS R, OVERMARS M H. A comparative study of probabilistic roadmap planners[M]∥Algorithmic foundations of robotics V. Berlin: Springer, 2004: 43-57.
87 TOTH C D, O'ROURKE J, GOODMAN J E, et al. Handbook of discrete and computational geometry[M]. 2017.
88 LAVALLE S M, BRANICKY M S, LINDEMANN S R. On the relationship between classical grid search and probabilistic roadmaps[J]. The International Journal of Robotics Research200423(7-8): 673-692.
89 BRANICKY M S, LAVALLE S M, OLSON K, et al. Quasi-randomized path planning[C]∥ 2001 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2001: 1481-1487.
90 SUKHAREV A G. Optimal strategies of the search for an extremum[J]. USSR Computational Mathematics and Mathematical Physics197111(4): 119-137.
91 JANSON L, ICHTER B, PAVONE M. Deterministic sampling-based motion planning: optimality, complexity, and performance[J]. The International Journal of Robotics Research201837(1): 46-61.
92 NIEDERREITER H. Random number generation and quasi-Monte Carlo methods[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1992.
93 PALMIERI L, BRUNS L, MEURER M, et al. Dispertio: optimal sampling for safe deterministic motion planning[J]. IEEE Robotics and Automation Letters20205(2): 362-368.
94 HSU D, LATOMBE J C, KURNIAWATI H. On the probabilistic foundations of probabilistic roadmap planning[J]. The International Journal of Robotics Research200625(7): 627-643.
95 VAN DEN BERG J P, OVERMARS M H. Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners[J]. The International Journal of Robotics Research200524(12): 1055-1071.
96 HOLLEMAN C, KAVRAKI L E. A framework for using the workspace medial axis in PRM planners[C]∥2000 IEEE International Conference on Robotics and Automation Symposia Proceedings. Piscataway: IEEE Press, 2000: 1408-1413.
97 YANG Y D, BROCK O. Adapting the sampling distribution in PRM planners based on an approximated medial axis[C]∥2004 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2004: 4405-4410.
98 FOSKEY M, GARBER M, LIN M C, et al. A Voronoi-based hybrid motion planner[C]∥ 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2001: 55-60.
99 AMATO N M, BAYAZIT O B, DALE L K, et al. OBPRM: An obstacle-based PRM for 3D workspaces[M]∥Robotics: The Algorithmic Perspective. 1998: 165-178.
100 BOOR V, OVERMARS M H, VAN DER STAPPEN A F. The Gaussian sampling strategy for probabilistic roadmap planners[C]∥1999 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 1999: 1018-1023.
101 SIMéON T, LAUMOND J P, NISSOUX C. Visibility-based probabilistic roadmaps for motion planning[J]. Advanced Robotics200014(6): 477-493.
102 HSU D, JIANG T T, REIF J, et al. The bridge test for sampling narrow passages with probabilistic roadmap planners[C]∥2003 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2003: 4420-4426.
103 HSU D, SANCHEZ-ANTE G, SUN Z. Hybrid PRM sampling with a cost-sensitive adaptive strategy[C]∥ 2005 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2005: 3874-3880.
104 YERSHOVA A, JAILLET L, SIMEON T, et al. Dynamic-domain RRTs: efficient exploration by controlling the sampling domain[C]∥2005 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2005: 3856-3861.
105 JAILLET L, YERSHOVA A, LA VALLE S M, et al. Adaptive tuning of the sampling domain for dynamic-domain RRTs[C]∥2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2005: 2851-2856.
106 BURNS B, BROCK O. Sampling-based motion planning using predictive models[C]∥2005 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2005: 3120-3125.
107 BURNS B, BROCK O. Toward optimal configuration space sampling[C]∥Robotics: Science and Systems I, 2005: 105-112.
108 BURNS B, BROCK O. Single-query motion planning with utility-guided random trees[C]∥2007 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2007: 3307-3312.
109 URMSON C, SIMMONS R. Approaches for heuristically biasing RRT growth[C]∥2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2003: 1178-1183.
110 FERGUSON D, STENTZ A. Anytime RRTs[C]∥2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2006: 5369-5375.
111 JAILLET L, CORTéS J, SIMéON T. Sampling-based path planning on configuration-space costmaps[J]. IEEE Transactions on Robotics201026(4): 635-646.
112 KARAMAN S, WALTER M R, PEREZ A, et al. Anytime motion planning using the RRT[C]∥2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 1478-1483.
113 HAUSER K. Lazy collision checking in asymptotically-optimal motion planning[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 2951-2957.
114 AKGUN B, STILMAN M. Sampling heuristics for optimal motion planning in high dimensions[C]∥2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2011: 2640-2645.
115 ISLAM F, NASIR J, MALIK U, et al. RRT*-Smart: rapid convergence implementation of RRT towards optimal solution[C]∥2012 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE Press, 2012: 1651-1656.
116 ARSLAN O, TSIOTRAS P. Use of relaxation methods in sampling-based algorithms for optimal motion planning[C]∥2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2013: 2421-2428.
117 KOENIG S, LIKHACHEV M, FURCY D. Lifelong planning A* [J]. Artificial Intelligence2004155(1-2): 93-146.
118 GAMMELL J D, BARFOOT T D, SRINIVASA S S. Informed sampling for asymptotically optimal path planning[J]. IEEE Transactions on Robotics201834(4): 966-984.
119 STRUB M P, GAMMELL J D. Advanced BIT*(ABIT*): sampling-based planning with advanced graph-search techniques[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 130-136.
120 STRUB M P, GAMMELL J D. Adaptively informed trees (AIT*): fast asymptotically optimal path planning through adaptive heuristics[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 3191-3198.
121 CHOUDHURY S, GAMMELL J D, BARFOOT T D, et al. Regionally accelerated batch informed trees (RABIT*): a framework to integrate local information into optimal path planning[C]∥2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2016: 4207-4214.
122 MARBLE J D, BEKRIS K E. Asymptotically near-optimal planning with probabilistic roadmap spanners[J]. IEEE Transactions on Robotics201329(2): 432-444.
123 DOBSON A, BEKRIS K E. Sparse roadmap spanners for asymptotically near-optimal motion planning[J]. The International Journal of Robotics Research201433(1): 18-47.
124 SALZMAN O, HALPERIN D. Asymptotically near-optimal RRT for fast, high-quality motion planning[J]. IEEE Transactions on Robotics201632(3): 473-483.
125 BRUCE J, VELOSO M M. Real-time randomized path planning for robot navigation[C]∥RoboCup 2002: Robot Soccer World Cup VI. Berlin: Springer, 2003: 288-295.
126 FERGUSON D, KALRA N, STENTZ A. Replanning with RRTs[C]∥2006 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2006: 1243-1248.
127 STENTZ A. Optimal and efficient path planning for partially known environments[M]∥Intelligent unmanned ground vehicles. Boston: Springer, 1997: 203-220.
128 ZUCKER M, KUFFNER J, BRANICKY M. Multipartite RRTs for rapid replanning in dynamic environments[C]∥2007 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2007: 1603-1609.
129 VAN DEN BERG J, FERGUSON D, KUFFNER J. Anytime path planning and replanning in dynamic environments[C]∥2006 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2006: 2366-2371.
130 FERGUSON D, Anytime STENTZ A., dynamic planning in high-dimensional search spaces[C]∥2007 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2007: 1310-1315.
131 LEFèVRE S, VASQUEZ D, LAUGIER C. A survey on motion prediction and risk assessment for intelligent vehicles[J]. Robomech Journal20141(1): 1-14.
132 RUDENKO A, PALMIERI L, HERMAN M, et al. Human motion trajectory prediction: a survey[J]. The International Journal of Robotics Research202039(8): 895-935.
133 RIFAI S, VINCENT P, MULLER X, et al. Contractive auto-encoders: explicit invariance during feature extraction[C]∥28th International Conference on Machine Learning, 2011: 833-840.
134 SOHN K, YAN X C, LEE H. Learning structured output representation using deep conditional generative models[C]∥28th International Conference on Neural Information Processing Systems. Cambridge: The MIT Press, 2015: 3483-3491.
135 WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems202132(1): 4-24.
136 QURESHI A H, YIP M C. Deeply informed neural sampling for robot motion planning[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 6582-6588.
137 SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The Journal of Machine Learning Research201415(1): 1929-1958.
138 WANG J K, CHI W Z, LI C M, et al. Neural RRT*: learning-based optimal path planning[J]. IEEE Transactions on Automation Science and Engineering202017(4): 1748-1758.
139 ICHTER B, SCHMERLING E, LEE T W E, et al. Learned critical probabilistic roadmaps for robotic motion planning[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 9535-9541.
140 KUMAR R, MANDALIKA A, CHOUDHURY S, et al. LEGO: leveraging experience in roadmap generation for sampling-based planning[C]∥2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2019: 1488-1495.
141 KHAN A, RIBEIRO A, KUMAR V, et al. Graph neural networks for motion planning[DB/OL]. arXiv preprint2006.06248, 2020.
142 LIU K, STADLER M, ROY N. Learned sampling distributions for efficient planning in hybrid geometric and object-level representations[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 9555-9562.
143 QURESHI A H, SIMEONOV A, BENCY M J, et al. Motion planning networks[C]∥2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2019: 2118-2124.
144 SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. Cambridge: The MIT Press, 2018.
145 HUH J, LEE D D. Efficient sampling with Q-learning to guide rapidly exploring random trees[J]. IEEE Robotics and Automation Letters20183(4): 3868-3875.
146 CHEN B, DAI B, LIN Q, et al. Learning to plan in high dimensions via neural exploration-exploitation trees [DB/OL]. arXiv preprint1903.00070, 2019.
147 TAMAR A, WU Y, THOMAS G, et al. Value iteration networks[DB/OL]. arXiv preprint:1602.02867, 2016.
148 BHARDWAJ M, CHOUDHURY S, BOOTS B, et al. Leveraging experience in lazy search[C]∥Robotics: Science and Systems XV, 2019: 464-472.
149 CHOUDHURY S, BHARDWAJ M, ARORA S, et al. Data-driven planning via imitation learning[J]. The International Journal of Robotics Research201837(13-14): 1632-1672.
150 ZHANG C, HUH J, LEE D D. Learning implicit sampling distributions for motion planning[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 3654-3661.
151 MELLINGER D, KUMAR V. Minimum snap trajectory generation and control for quadrotors[C]∥2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 2520-2525.
152 RICHTER C, BRY A, ROY N. Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments[M]∥Robotics Research. Cham: Springer, 2016: 649-666.
153 DONALD B, XAVIER P, CANNY J, et al. Kinodynamic motion planning[J]. Journal of the ACM199340(5): 1048-1066.
154 PONTRYAGIN L S. Mathematical theory of optimal processes[M]. London: Routledge, 2018.
155 HSU D, KINDEL R, LATOMBE J C, et al. Randomized kinodynamic motion planning with moving obstacles[J]. The International Journal of Robotics Research200221(3): 233-255.
156 KIM J, ESPOSITO J M, KUMAR V. An RRT-based algorithm for testing and validating multi-robot controllers[C]∥Robotics: Science and Systems I, 2005: 249-256.
157 JAILLET L, HOFFMAN J, VAN DEN BERG J, et al. EG-RRT: Environment-guided random trees for kinodynamic motion planning with uncertainty and obstacles[C]∥2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2011: 2646-2652.
158 FRAZZOLI E, DAHLEH M A, FERON E. Real-time motion planning for agile autonomous vehicles[J]. Journal of Guidance, Control, and Dynamics200225(1): 116-129.
159 LEWIS F L, VRABIE D L, SYRMOS V L. Optimal control[M]. Hoboken: John Wiley & Sons, Inc, 2012.
160 GLASSMAN E, TEDRAKE R. A quadratic regulator-based heuristic for rapidly exploring state space[C]∥2010 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2010: 5021-5028.
161 CHENG P, LAVALLE S M. Resolution complete rapidly-exploring random trees[C]∥2002 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2002: 267-272.
162 CHENG P, LAVALLE S M. Reducing metric sensitivity in randomized trajectory design[C]∥2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2001: 43-48.
163 KALISIAK M, VAN DE PANNE M. RRT-blossom: RRT with a local flood-fill behavior[C]∥2006 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2006: 1237-1242.
164 SHKOLNIK A, WALTER M, TEDRAKE R. Reachability-guided sampling for planning under differential constraints[C]∥2009 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2009: 2859-2865.
165 LADD A M, KAVRAKI L E. Fast tree-based exploration of state space for robots with dynamics[M]∥Algorithmic Foundations of Robotics VI. Berlin: Springer, 2004: 297-312.
166 LADD A M, KAVRAKI L E. Motion planning in the presence of drift, underactuation and discrete system changes[C]∥Robotics: Science and Systems I, 2005: 233-240.
167 BEKRIS K E, KAVRAKI L E. Greedy but safe replanning under kinodynamic constraints[C]∥2007 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2007: 704-710.
168 ?UCAN I A, KAVRAKI L E. Kinodynamic motion planning by interior-exterior cell exploration[M]∥Algorithmic Foundation of Robotics VIII. Berlin: Springer, 2010: 449-464.
169 SUCAN I A, KAVRAKI L E. A sampling-based tree planner for systems with complex dynamics[J]. IEEE Transactions on Robotics201228(1): 116-131.
170 ALLEN R E, PAVONE M. A real-time framework for kinodynamic planning in dynamic environments with application to quadrotor obstacle avoidance[J]. Robotics and Autonomous Systems2019115: 174-193.
171 BHARATHEESHA M, CAARLS W, WOLFSLAG W J, et al. Distance metric approximation for state-space RRTs using supervised learning[C]∥2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2014: 252-257.
172 PALMIERI L, ARRAS K O. Distance metric learning for RRT-based motion planning with constant-time inference[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 637-643.
173 WOLFSLAG W J, BHARATHEESHA M, MOERLAND T M, et al. RRT-CoLearn: towards kinodynamic planning without numerical trajectory optimization[J]. IEEE Robotics and Automation Letters20183(3): 1655-1662.
174 SLOTINE J J E, LI W. Applied nonlinear control[M]. 1991.
175 KARAMAN S, FRAZZOLI E. Optimal kinodynamic motion planning using incremental sampling-based methods[C]∥49th IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2010: 7681-7687.
176 OTTE M, FRAZZOLI E. RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning[J]. The International Journal of Robotics Research201635(7): 797-822.
177 PEREZ A, PLATT R, KONIDARIS G, et al. LQR-RRT*: optimal sampling-based motion planning with automatically derived extension heuristics[C]∥2012 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2012: 2537-2542.
178 WEBB D J, VAN DEN BERG J. Kinodynamic RRT*: Asymptotically optimal motion planning for robots with linear dynamics[C]∥2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2013: 5054-5061.
179 GORETKIN G, PEREZ A, PLATT R, et al. Optimal sampling-based planning for linear-quadratic kinodynamic systems[C]∥2013 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2013: 2429-2436.
180 XIE C, VAN DEN BERG J, PATIL S, et al. Toward asymptotically optimal motion planning for kinodynamic systems using a two-point boundary value problem solver[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 4187-4194.
181 NOCEDAL J, WRIGHT S. Numerical optimization[M]. New York: Springer, 2006.
182 SCHMERLING E, JANSON L, PAVONE M. Optimal sampling-based motion planning under differential constraints: The drift case with linear affine dynamics[C]∥2015 54th IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2015: 2574-2581.
183 KUNZ T, THOMAZ A, CHRISTENSEN H. Hierarchical rejection sampling for informed kinodynamic planning in high-dimensional spaces[C]∥2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2016: 89-96.
184 YI D Q, THAKKER R, GULINO C, et al. Generalizing informed sampling for asymptotically-optimal sampling-based kinodynamic planning via Markov chain Monte Carlo[C]∥2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2018: 7063-7070.
185 JOSHI S S, HUTCHINSON S, TSIOTRAS P. TIE: time-informed exploration for robot motion planning[J]. IEEE Robotics and Automation Letters20216(2): 3585-3591.
186 KURZHANSKIY A A, VARAIYA P. Ellipsoidal toolbox (ET)[C]∥Proceedings of the 45th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2006: 1498-1503.
187 LITTLEFIELD Z, BEKRIS K E. Efficient and asymptotically optimal kinodynamic motion planning via dominance-informed regions[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 1-9.
188 LITTLEFIELD Z, BEKRIS K E. Informed asymptotically near-optimal planning for field robots with dynamics[C]∥Field and Service Robotics. Cham: Springer, 2018: 449-463.
189 PIVTORAIKO M, KNEPPER R A, KELLY A. Differentially constrained mobile robot motion planning in state lattices[J]. Journal of Field Robotics200926(3): 308-333.
190 LIKHACHEV M, FERGUSON D. Planning long dynamically feasible maneuvers for autonomous vehicles[J]. The International Journal of Robotics Research200928(8): 933-945.
191 HUH J, XING G, WANG Z Y, et al. Learning to generate cost-to-go functions for efficient motion planning[M]∥Experimental robotics. Cham: Springer, 2021: 555-565.
192 HUH J, LEE D D, ISLER V. Learning Continuous Cost-to-Go Functions for Non-holonomic Systems[DB/OL]. arXiv preprint:2103.11168, 2021.
193 LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[DB/OL]. arXiv preprint:1509.02971, 2015.
194 FAUST A, RUYMGAART P, SALMAN M, et al. Continuous action reinforcement learning for control-affine systems with unknown dynamics[J]. IEEE/CAA Journal of Automatica Sinica20141(3): 323-336.
195 BETTS J T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance, Control, and Dynamics199821(2): 193-207.
196 KELLY M. An introduction to trajectory optimization: how to do your own direct collocation[J]. SIAM Review201759(4): 849-904.
197 MAYNE D Q, RAWLINGS J B, RAO C V, et al. Constrained model predictive control: Stability and optimality[J]. Automatica200036(6): 789-814.
198 MAYNE D Q. Model predictive control: Recent developments and future promise[J]. Automatica201450(12): 2967-2986.
199 KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[M]∥Autonomous robot vehicles. New York: Springer, 1986: 396-404.
200 GILL P E, MURRAY W, SAUNDERS M A. SNOPT: an SQP algorithm for large-scale constrained optimization[J]. SIAM Review200547(1): 99-131.
201 W?CHTER A, BIEGLER L T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming[J]. Mathematical Programming2006106(1): 25-57.
202 BOYD S, VANDENBERGHE L. Convex optimization[M]. Cambridge: Cambridge University Press, 2004.
203 MALYUTA D, REYNOLDS T P, SZMUK M, et al. Convex optimization for trajectory generation[DB/OL]. arXiv preprint:2106.09125, 2021.
204 ZHANG X J, LINIGER A, BORRELLI F. Optimization-based collision avoidance[J]. IEEE Transactions on Control Systems Technology202129(3): 972-983.
205 DEITS R, TEDRAKE R. Efficient mixed-integer planning for UAVs in cluttered environments[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 42-49.
206 BLEKHERMAN G, PARRILO P A, THOMAS R R. Semidefinite optimization and convex algebraic geometry[M]. Philadelphia: Society for Industrial and Applied Mathematics, 2012.
207 HARABOR D, GRASTIEN A. Online graph pruning for pathfinding on grid maps[C]∥Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011: 1114-1119.
208 THRUN S, BURGARD W, FOX D. Probabilistic robotics[M]. Cambridge: The MIT press, 2005.
209 PINEAU J, GORDON G, THRUN S. Point-based value iteration: an anytime algorithm for POMDPs[C]∥Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, 2003: 1025-1032.
210 SMITH T, SIMMONS R. Point-based POMDP algorithms: improved analysis and implementation[DB/OL]. arXiv preprint:1207.1412, 2012.
211 SPAAN M T J, VLASSIS N. Perseus: randomized point-based value iteration for POMDPs[J]. Journal of Artificial Intelligence Research200524: 195-220.
212 KURNIAWATI H, HSU D, LEE W S. SARSOP: efficient point-based POMDP planning by approximating optimally reachable belief spaces[M]∥Robotics: Science and Systems IV2009: 65-72.
213 ROSS S, PINEAU J, PAQUET S, et al. Online planning algorithms for POMDPs[J]. Journal of Artificial Intelligence Research200832: 663-704.
214 KURNIAWATI H, YADAV V. An online POMDP solver for uncertainty planning in dynamic environment[M]∥Robotics Research. Cham: Springer, 2016: 611-629.
215 BROWNE C B, POWLEY E, WHITEHOUSE D, et al. A survey of Monte Carlo tree search methods[J]. IEEE Transactions on Computational Intelligence and AI in Games20124(1): 1-43.
216 CAI P P, LUO Y F, HSU D, et al. HyP-DESPOT: a hybrid parallel algorithm for online planning under uncertainty[J]. The International Journal of Robotics Research202140(2-3): 558-573.
217 BAI H, HSU D, LEE W S, et al. Monte Carlo value iteration for continuous-state POMDPs[M]∥Algorithmic Foundations of Robotics IX. Berlin: Springer, 2010: 175-191.
218 BAI H Y, HSU D, LEE W S. Integrated perception and planning in the continuous space: a POMDP approach[J]. The International Journal of Robotics Research201433(9): 1288-1302.
219 PORTA J M, VLASSIS N, SPAAN M T J, et al. Point-based value iteration for continuous POMDPs[J]. Journal of Machine Learning Research20067: 2329-2367.
220 HOEY J, POUPART P. Solving POMDPs with continuous or large discrete observation spaces[C]∥Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence. Hong Kong: Professional Book Center, 2005: 1332-1338.
221 SEILER K M, KURNIAWATI H, SINGH S P N. An online and approximate solver for POMDPs with continuous action space[C]∥2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 2290-2297.
222 PRENTICE S, ROY N. The belief roadmap: efficient planning in belief space by factoring the covariance[J]. The International Journal of Robotics Research200928(11-12): 1448-1465.
223 BRY A, ROY N. Rapidly-exploring random belief trees for motion planning under uncertainty[C]∥2011 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2011: 723-730.
224 VAN DEN BERG J, ABBEEL P, GOLDBERG K. LQG-MP: Optimized path planning for robots with motion uncertainty and imperfect state information[J]. The International Journal of Robotics Research201130(7): 895-913.
225 AGHA-MOHAMMADI A A, CHAKRAVORTY S, AMATO N M. FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements[J]. The International Journal of Robotics Research201433(2): 268-304.
226 RAWLINGS J B, MAYNE D Q, DIEHL M. Model predictive control: theory, computation, and design[M]. Madison: Nob Hill Publishing, 2017.
227 SCOKAERT P O M, MAYNE D Q. Min-max feedback model predictive control for constrained linear systems[J]. IEEE Transactions on Automatic Control199843(8): 1136-1142.
228 RAKOVIC S V, KERRIGAN E C, KOURAMAS K I, et al. Invariant approximations of the minimal robust positively invariant set[J]. IEEE Transactions on Automatic Control200550(3): 406-410.
229 MAYNE D Q, SERON M M, RAKOVI? S V. Robust model predictive control of constrained linear systems with bounded disturbances[J]. Automatica200541(2): 219-224.
230 RAKOVI? S V, KOUVARITAKIS B, FINDEISEN R, et al. Homothetic tube model predictive control[J]. Automatica201248(8): 1631-1638.
231 RAKOVIC S V, KOUVARITAKIS B, CANNON M, et al. Parameterized tube model predictive control[J]. IEEE Transactions on Automatic Control201257(11): 2746-2761.
232 RAKOVI? S V, LEVINE W S, A?IKMESE B. Elastic tube model predictive control[C]∥2016 American Control Conference (ACC). Piscataway: IEEE Press, 2016: 3594-3599.
233 ALTHOFF M, STURSBERG O, BUSS M. Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization[C]∥2008 47th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 2008: 4042-4048.
234 ALTHOFF M, DOLAN J M. Online verification of automated road vehicles using reachability analysis[J]. IEEE Transactions on Robotics201430(4): 903-918.
235 ALTHOFF D, ALTHOFF M, SCHERER S. Online safety verification of trajectories for unmanned flight with offline computed robust invariant sets[C]∥2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2015: 3470-3477.
236 MITCHELL I M, BAYEN A M, TOMLIN C J. A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games[J]. IEEE Transactions on Automatic Control200550(7): 947-957.
237 OSHER S, FEDKIW R. Level set methods and dynamic implicit surfaces[M]. New York: Springer New York, 2003.
238 HERBERT S L, CHEN M, HAN S, et al. FaSTrack: a modular framework for fast and guaranteed safe motion planning[C]∥2017 IEEE 56th Annual Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2017: 1517-1522.
239 SINGH S, CHEN M, HERBERT S L, et al. Robust tracking with model mismatch for fast and safe planning: an SOS optimization approach[DB/OL]. arXiv preprint1808.00649, 2018.
240 BANSAL S, CHEN M, HERBERT S, et al. Hamilton-Jacobi reachability: a brief overview and recent advances[C]∥2017 IEEE 56th Annual Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2017: 2242-2253.
241 CHEN M, HERBERT S L, VASHISHTHA M S, et al. Decomposition of reachable sets and tubes for a class of nonlinear systems[J]. IEEE Transactions on Automatic Control201863(11): 3675-3688.
242 HERBERT S L, BANSAL S, GHOSH S, et al. Reachability-based safety guarantees using efficient initializations[C]∥2019 IEEE 58th Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2019: 4810-4816.
243 LEW T, PAVONE M. Sampling-based reachability analysis: A random set theory approach with adversarial sampling[DB/OL]. arXiv preprint2008.10180, 2020.
244 BANSAL S, TOMLIN C J. DeepReach: a deep learning approach to high-dimensional reachability[C]∥2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2021: 1817-1824.
245 FISAC J F, LUGOVOY N F, RUBIES-ROYO V, et al. Bridging Hamilton-Jacobi safety analysis and reinforcement learning[C]∥2019 International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2019: 8550-8556.
246 DARBON J, LANGLOIS G P, MENG T W. Overcoming the curse of dimensionality for some Hamilton-Jacobi partial differential equations via neural network architectures[J]. Research in the Mathematical Sciences20207(3): 1-50.
247 KHALIL H K, GRIZZLE J W. Nonlinear systems[M]. 2002.
248 TEDRAKE R, MANCHESTER I R, TOBENKIN M, et al. LQR-trees: feedback motion planning via sums-of-squares verification[J]. The International Journal of Robotics Research201029(8): 1038-1052.
249 WANG L, AMES A D, EGERSTEDT M. Safety barrier certificates for collisions-free multirobot systems[J]. IEEE Transactions on Robotics201733(3): 661-674.
250 LOHMILLER W, SLOTINE J J E. On contraction analysis for non-linear systems[J]. Automatica199834(6): 683-696.
251 MANCHESTER I R, SLOTINE J J E. Control contraction metrics: convex and intrinsic criteria for nonlinear feedback design[J]. IEEE Transactions on Automatic Control201762(6): 3046-3053.
252 LUO Y F, BAI H Y, HSU D, et al. Importance sampling for online planning under uncertainty[J]. The International Journal of Robotics Research201938(2-3): 162-181.
253 HEWING L, WABERSICH K P, MENNER M, et al. Learning-based model predictive control: toward safe learning in control[J]. Annual Review of Control, Robotics, and Autonomous Systems20203(1): 269-296.
254 FRIDOVICH-KEIL D, BAJCSY A, FISAC J F, et al. Confidence-aware motion prediction for real-time collision avoidance1[J]. The International Journal of Robotics Research202039(2-3): 250-265.
255 GAL Y, GHAHRAMANI Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning[C]∥Proceedings of the 33rd International Conference on International Conference on Machine Learning, 2016: 1050-1059.
文章导航

/