流体力学与飞行力学

倾斜射流撞壁铺展的数值仿真

  • 唐亮 ,
  • 王凯 ,
  • 李文龙 ,
  • 刘亚洲 ,
  • 张波涛 ,
  • 任孝文
展开
  • 西安航天动力研究所 液体火箭发动机技术重点实验室,西安 710100
.E-mail:tang410632@163.com

收稿日期: 2021-09-24

  修回日期: 2021-10-18

  录用日期: 2021-11-29

  网络出版日期: 2021-12-09

基金资助

国家自然科学基金(11502186)

Numerical simulation on spreading of oblique jet impinging onto a wall

  • Liang TANG ,
  • Kai WANG ,
  • Wenlong LI ,
  • Yazhou LIU ,
  • Botao ZHANG ,
  • Xiaowen REN
Expand
  • Science and Technology on Liquid Rocket Engine Laboratory,Xi’an Aerospace Propulsion Institute,Xi’an 710100,China
E-mail: tang410632@163.com

Received date: 2021-09-24

  Revised date: 2021-10-18

  Accepted date: 2021-11-29

  Online published: 2021-12-09

Supported by

National Natural Science Foundation of China(11502186)

摘要

为了加深对射流撞壁铺展形成液膜的认识,开展倾斜射流撞壁数值仿真研究。采用网格自适应加密技术对射流撞壁后的液膜铺展过程开展两相数值仿真研究,获得并分析了典型工况下液膜铺展的过程、流场结构以及射流撞壁区局部流动特征。从数值仿真结果中能清晰地分辨出液膜的关键特征,与试验结果的对比也表明了数值仿真方法的可行性与准确性。通过数值仿真发现,射流撞壁后,流动以滞止点为中心,呈辐射状向四周铺展,汇入液膜边缘处水跃区后流动方向偏转,并继续向下游流动,这是射流撞壁铺展形成液膜的基本过程;液膜的惯性力驱动着液膜呈辐射状向外铺展,而在液膜边缘位置处的表面张力和壁面接触角的影响下,液膜边缘形成高压区推动液膜收缩,液膜惯性力在壁面的剪切作用下逐渐减小,直至减小到与液膜边缘处表面张力等其他作用力相平衡,从而确定液膜的边界;数值仿真结果也验证了撞壁区流动的滞止点处于射流与壁面的椭圆形接触面的一个焦点附近。

本文引用格式

唐亮 , 王凯 , 李文龙 , 刘亚洲 , 张波涛 , 任孝文 . 倾斜射流撞壁铺展的数值仿真[J]. 航空学报, 2023 , 44(4) : 126428 -126428 . DOI: 10.7527/S1000-6893.2021.26428

Abstract

In order to deepen the understanding of the liquid film formed by the spreading of the jet impinging onto the plate, the numerical simulation of the oblique jet impinging onto the wall was carried out in this paper. The two-phase numerical simulation of the liquid film spreading process after the jet impinge onto the wall was carried out using mesh adaptive method. The spreading process, flow field structure and local flow characteristics of the wall impingement zone were obtained and analyzed under typical working conditions. The key characteristics of the liquid film can be clearly identified from numerical simulation results, and the comparison with the experimental results also shows the feasibility and accuracy of the numerical simulation method. Through numerical simulation, it is found that after the jet impinges onto the wall, the flow takes the stagnation point as the center and spreads around in a radial structure. After merging into the hydraulic-jump zone at the edge of the liquid film, the flow direction deflects and continues to flow downstream. This is the basic process of the jet impinging the wall and spreading to form the liquid sheet. Inertial force drives the liquid film to radiate outward and spread out. Then, under the influence of the surface tension and surface contact angle at the edge of the liquid film, a high pressure zone of the liquid film is formed and pushes the liquid film to shrink. The inertia force of the liquid film decreases gradually under the shear action of the wall until it is in balance with other forces such as the surface tension at the edge of the liquid film. Thus, the boundary of the liquid film is determined. The numerical simulation results also verify that the stagnation point of the flow in the impingement zone is near a focal point of the elliptical contact surface between the jet and the wall.

参考文献

1 唐亮, 李平, 周立新. 液体火箭发动机液膜冷却研究综述[J]. 火箭推进202046(1): 1-12.
  TANG L, LI P, ZHOU L X. Review on liquid film cooling of liquid rocket engine[J]. Journal of Rocket Propulsion202046(1): 1-12 (in Chinese).
2 张锋, 仲伟聪. 膜冷却推力室传热计算研究[J]. 火箭推进200935(4): 34-37, 48.
  ZHANG F, ZHONG W C. Computational investigation of heat transfer for film cooling thrust chamber[J]. Journal of Rocket Propulsion200935(4): 34-37, 48 (in Chinese).
3 吴凌峰, 杨成虎, 姚锋, 等. 单股自由圆射流撞壁雾化实验[J]. 火箭推进202046(1): 44-51.
  WU L F, YANG C H, YAO F, et al. Atomization experiment of single free circular jet impinging against wall[J]. Journal of Rocket Propulsion202046(1): 44-51 (in Chinese).
4 ARAKERI J, RAO K P. On radial film flow on a horizontal surface and the circular hydraulic jump[J]. Journal of the Indian Institute of Science201376: 73-91.
5 BLACKFORD B L. The hydraulic jump in radially spreading flow: A new model and new experimental data[J]. American Journal of Physics199664(2): 164-169.
6 BOHR T, DIMON P, PUTKARADZE V. Shallow-water approach to the circular hydraulic jump[J]. Journal of Fluid Mechanics1993254: 635-648.
7 BOUAINOUCHE M, BOURABAA N, DESMET B. Numerical study of the wall shear stress produced by the impingement of a plane turbulent jet on a plate[J]. International Journal of Numerical Methods for Heat & Fluid Flow19977(6): 548-564.
8 BRECHET Y, NéDA Z. On the circular hydraulic jump[J]. American Journal of Physics199967(8): 723-731.
9 BUSH J W M, ARISTOFF J M. The influence of surface tension on the circular hydraulic jump[J]. Journal of Fluid Mechanics2003489: 229-238.
10 KIBAR A, KARABAY H, YI?IT K S, et al. Experimental investigation of inclined liquid water jet flow onto vertically located superhydrophobic surfaces[J]. Experiments in Fluids201049(5): 1135-1145.
11 林庆国. 空间轨控发动机高效燃烧室仿真与试验研究[D]. 长沙: 国防科技大学, 2015.
  LIN Q G. Simulation and experiment research on the high efficient combustion chamber for space orbit maneuvering rocket engine[D]. Changsha: National University of Defense Technology, 2015 (in Chinese).
12 GOOD R, NOLLET B. Fluid film distribution investigation for liquid film cooling application: AIAA-2017-4920[R]. Reston: AIAA, 2017.
13 HASSON D, PECK R E. Thickness distribution in a sheet formed by impinging jets[J]. American Institute of Chemical Engineers Journal196410(5): 752-754.
14 BREMOND N, VILLERMAUX E. Atomization by jet impact[J]. Journal of Fluid Mechanics2006549: 273-306.
15 YANG L J, ZHAO F, FU Q F, et al. Liquid sheet formed by impingement of two viscous jets[J]. Journal of Propulsion and Power201430(4): 1016-1026.
16 YANG L J, LI P H, FU Q F. Liquid sheet formed by a Newtonian jet obliquely impinging on pro/hydrophobic surfaces[J]. International Journal of Multiphase Flow2020125: 103192.
17 唐亮, 胡锦华, 刘计武, 等. 倾斜射流撞壁实验研究及液膜几何参数建模[J]. 航空学报202041(12): 124601.
  TANG L, HU J H, LIU J W, et al. Experimental study on oblique jet wall impingement and geometrical parameter modeling of liquid film[J]. Acta Aeronautica et Astronautica Sinica202041(12): 124601 (in Chinese).
18 唐亮, 李平, 周立新, 等. 倾斜射流撞壁形成的液膜外形的理论建模[J]. 推进技术202142(2): 327-334.
  TANG L, LI P, ZHOU L X, et al. Theoretical modeling of liquid sheet shape formed by oblique jet impinging onto wall[J]. Journal of Propulsion Technology202142(2): 327-334 (in Chinese).
19 KATE R P, DAS P K, CHAKRABORTY S. Effects of jet obliquity on hydraulic jumps formed by impinging circular liquid jets on a moving horizontal plate[J]. Journal of Fluids Engineering2009131(3): 034502.
20 MERTENS K, PUTKARADZE V, VOROBIEFF P. Morphology of a stream flowing down an inclined plane. Part 1. Braiding[J]. Journal of Fluid Mechanics2005531: 49-58.
21 WILSON D I, LE B L, DAO H D A, et al. Surface flow and drainage films created by horizontal impinging liquid jets[J]. Chemical Engineering Science201268(1): 449-460.
22 WANG R X, HUANG Y, FENG X, et al. Semi-empirical model for the engine liquid fuel sheet formed by the oblique jet impinging onto a plate[J]. Fuel2018233: 84-93.
23 FARD M, ASHGRIZ N, MOSTAGHIMI J. A numerical model for flow simulation in spray nozzles: AIAA-2004-1156[R]. Reston: AIAA, 2004.
24 KIBAR A. Experimental and numerical investigations of the impingement of an oblique liquid jet onto a superhydrophobic surface: Energy transformation[J]. Fluid Dynamics Research201648(1): 015501.
25 KIBAR A. Experimental and numerical investigation of liquid jet impingement on superhydrophobic and hydrophobic convex surfaces[J]. Fluid Dynamics Research201749(1): 015502.
26 KIBAR A. Experimental and numerical investigation on a liquid jet impinging on a vertical superhydrophobic surface: Spreading and reflection[J]. Progress in Computational Fluid Dynamics201818(3): 150-163.
27 SARCHAMI A, ASHGRIZ N, TRAN H. A spray model to predict droplet size distribution produced by wall impingement nozzle: AIAA-2008-3837[R]. Reston: AIAA, 2008.
28 GRADECK M, KOUACHI A, DANI A, et al. Experimental and numerical study of the hydraulic jump of an impinging jet on a moving surface[J]. Experimental Thermal and Fluid Science200630(3): 193-201.
29 CHO M J, THOMAS B G, LEE P J. Three-dimensional numerical study of impinging water jets in runout table cooling processes[J]. Metallurgical and Materials Transactions B200839(4): 593-602.
30 FUJIMOTO H, SUZUKI Y, HAMA T, et al. Flow characteristics of circular liquid jet impinging on a moving surface covered with a water film[J]. ISIJ International201151(9): 1497-1505.
31 赵林林, 丁玉栋, 朱恂, 等. 不同壁面特性下液膜铺展性能数值模拟[J]. 原子能科学技术201751(5): 865-871.
  ZHAO L L, DING Y D, ZHU X, et al. Numerical simulation of liquid film spreading performance with different wall features[J]. Atomic Energy Science and Technology201751(5): 865-871 (in Chinese).
32 COOKE J J, ARMSTRONG L M, LUO K H, et al. Adaptive mesh refinement of gas-liquid flow on an inclined plane[J]. Computers & Chemical Engineering201460: 297-306.
33 邱添. 液体射流冲击平板数值模拟研究[D]. 天津: 中国民航大学, 2020.
  QIU T. Liquid jet plate imping numerical simulation[D]. Tianjin: Civil Aviation University of China, 2020 (in Chinese).
34 BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics1992100(2): 335-354.
文章导航

/