先进航空材料焊接/连接专栏

异种材料连接研究进展

  • 冯吉才
展开
  • 哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001

收稿日期: 2021-09-18

  修回日期: 2021-10-14

  网络出版日期: 2021-12-09

基金资助

国家自然科学基金(U1537206)

Research progress on dissimilar materials joining

  • FENG Jicai
Expand
  • State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China

Received date: 2021-09-18

  Revised date: 2021-10-14

  Online published: 2021-12-09

Supported by

National Natural Science Foundation of China (U1537206)

摘要

异种材料构件因其可实现不同材料的优异性能组合,极大提高设计和生产的灵活性,满足现代工程结构的功能和性能要求,具有更高的技术和经济价值,在各领域有广阔的应用前景。因此,异种材料的可靠连接尤为重要。然而,异种材料往往因物理及化学性能差异较大导致连接困难。本文综述了异种材料钎焊、激光焊、电子束焊、电弧焊以及搅拌摩擦焊的国内外研究进展和应用现状,总结了各焊接方法在异种材料连接过程中的研究焦点。在此基础之上,对异种材料连接进行了总结和展望,拟为未来异种材料连接的研究方向和技术突破提供参考。

本文引用格式

冯吉才 . 异种材料连接研究进展[J]. 航空学报, 2022 , 43(2) : 626413 -626413 . DOI: 10.7527/S1000-6893.2021.26413

Abstract

Dissimilar material structures could realize the combination of dissimilar materials with excellent performance, which improves the flexibility in design and production and meets the demand for function and properties in modern engineering structures. These structures have been widely used in many fields due to their higher technological and economic value. Therefore, reliable joining of dissimilar materials is becoming increasingly important. Nevertheless, the great difference in physical and chemical properties between dissimilar materials poses a huge challenge to achieve reliable joining. This work reviewed the research status and development on brazing, laser welding, electron beam welding, arc welding, and friction stir welding of dissimilar materials in China and abroad. Based on this, summaries and prospects about dissimilar joining are given, which provides a reference for research interests and technology breakthrough in the future study.

参考文献

[1] EUSTATHOPOULOS N, LANDRY K. Dynamics of wetting in reactive metal/ceramic systems:Linear spreading[J].Acta Materialia, 1996, 44(10):3923-3932.
[2] DEZELLUS O, HODAJ F, EUSTATHOPOULOS N. Chemical reaction-limited spreading:the triple line velocity versus contact angle relation[J].Acta Materialia, 2002, 50(19):4741-4753.
[3] MORTENSEN A, DREVET B, EUSTATHOPOULOS N. Kinetics of diffusion-limited spreading of sessile drops in reactive wetting[J].Scripta Materialia, 1997, 36(6):645-651.
[4] YANG L, SHEN P, LIN Q, et al. Effect of Cr on the wetting in Cu/graphite system[J].Applied Surface Science, 2011, 257(14):6276-6281.
[5] SAIZ E, TOMSIA A P. Kinetics of high-temperature spreading[J].Current Opinion in Solid State and Materials Science, 2005, 9(4-5):167-173.
[6] CHIHIRO I, SHUN-ICHIRO T. Reactive wetting of Ag-Cu-Ti on SiC in HRTEM[J].Acta Materialia, 1998, 46(7):2381-2386.
[7] NOMURA M, ICHIMORI T, IWAMOTO C, et al. Structure of wetting front in the Ag-Cu-Ti/SiC reactive system[J].Journal of Materials Science, 2000, 35(16):3953-3958.
[8] GREMILLARD L, SAIZA E, CHEVALIERB J, et al. Wetting and strength in the tin-silver-titanium/sapphire system[J].Zeitschrift Für Metallkunde, 2004, 95(4):261-265.
[9] FU W, SONG X G, ZHAO Y X, et al. Effect of Ti content on the wetting behavior of Sn0.3Ag0.7Cu/AlN system[J].Materials & Design, 2017, 115:1-7.
[10] SONG X, PASSERONE A, FU W, et al. Wetting and spreading behavior of Sn-Ti alloys on SiC[J].Materialia, 2018, 3:57-63.
[11] FU W, PASSERONE A, BIAN H, et al. Wetting and interfacial behavior of Sn-Ti alloys on zirconia[J].Journal of Materials Science, 2019, 54(1):812-822.
[12] SUI R, JU C, ZHONG W, et al. Improved wetting of Al2O3 by molten Sn with Ti addition at 973-1273 K[J].Journal of Alloys and Compounds, 2018, 739:616-622.
[13] AN Q, CONG X, SHEN P, et al. Roles of alloying elements in wetting of SiC by Al[J].Journal of Alloys and Compounds, 2019, 784:1212-1220.
[14] VALENZA F, GAMBARO S, MUOLO M L, et al. Wetting of SiC by Al-Ti alloys and joining by in-situ formation of interfacial Ti3Si(Al)C2[J].Journal of the European Ceramic Society, 2018, 38(11):3727-3734.
[15] SONG X, ZHAO Y, HU S, et al. Wetting of AgCu-Ti filler on porous Si3 N4 ceramic and brazing of the ceramic to TiAl alloy[J].Ceramics International, 2018, 44(5):4622-4629.
[16] KOLTSOV A, DUMONT M, HODAJ F, et al. Influence of Ti on wetting of AlN by Ni-base alloys[J].Materials Science and Engineering:A, 2006, 415(1-2):171-176.
[17] SIEGMUND P, GUHL C, SCHMIDT E, et al. Reactive wetting of alumina by Ti-rich Ni-Ti-Zr alloys[J].Journal of Materials Science, 2016, 51(8):3693-3700.
[18] LIN Q L, WANG L, SUI R. Wetting of AlN by moten Cu-8.6Zr-xTi ternary alloys at 1373 K[J].Acta Materialia, 2021, 203:116488.
[19] LIN Q L, LIU L, YANG H Y, et al. Wetting of SiC by molten Cu-20Me-2Cr (Me=Ag, Mn, Si, and Sn) alloys at 1373 K[J].Vacuum, 2021, 185:110002.
[20] 梁赤勇,堵永国,张为军,等. Cf/SiC复合材料表面熔盐反应法锆金属化研究[J].航空材料学报, 2009, 29(2):92-96.LIANG C Y, DU Y G, ZHANG W J, et al. Study on zirconium metallic coating for Cf/SiC composites by molten salt reaction[J].Journal of Aeronautical Materials, 2009, 29(2):92-96(in Chinese).
[21] SALVO M, CASALEGNO V, RIZZO S, et al. One-step brazing process to join CFC composites to copper and copper alloy[J].Journal of Nuclear Materials, 2008, 374(1-2):69-74.
[22] MIARNAU MARIN A, SCHNEIDER G, VENESS R. Development and test of a rectangular CERN ConFlat-type flange[J].Vacuum, 2015, 121:202-206.
[23] 郭夏君. 陶瓷-金属低温超声钎焊方法及其连接机理研究[D]. 哈尔滨:哈尔滨工业大学, 2019.GUO X J. Study on method and mechanism of ultrasonic assisted soldering of ceramic-metal joints[D]. Harbin:Harbin Institute of Technology, 2019(in Chinese).
[24] HE Z J, LI C, QI J L, et al. Pre-infiltration and brazing behaviors of Cf/C composites with high temperature Ti-Si eutectic alloy[J].Carbon, 2018, 140:57-67.
[25] QI J L, LIN J H, GUO J L, et al. Plasma treatment on SiO2f/SiO2 composites for their assisted brazing with Nb[J].Vacuum, 2016, 123:136-139.
[26] SI X Q, CAO J, RITUCCI I, et al. Enhancing the long-term stability of Ag based seals for solid oxide fuel/electrolysis applications by simple interconnect aluminization[J].International Journal of Hydrogen Energy, 2019, 44(5):3063-3074.
[27] CAO J, WANG Z Q, LI C, et al. Microstructure evolution and mechanical properties of Co coated AISI 441 ferritic stainless steel/YSZ reactive air brazed joint[J].International Journal of Hydrogen Energy, 2021, 46(12):8758-8766.
[28] WANG H Q, CAO J, FENG J C. Brazing mechanism and infiltration strengthening of CC composites to TiAl alloys joint[J].Scripta Materialia, 2010, 63(8):859-862.
[29] ZHANG Q, SUN L B, LIU Q Y, et al. Effect of brazing parameters on microstructure and mechanical properties of Cf/SiC and Nb-1Zr joints brazed with Ti-Co-Nb filler alloy[J].Journal of the European Ceramic Society, 2017, 37(3):931-937.
[30] REN H S, XIONG H P, LONG W M, et al. Interfacial diffusion reactions and mechanical properties of Ti3Al/Ni-based superalloy joints brazed with AgCuPd filler metal[J].Materials Characterization, 2018, 144:316-324.
[31] LIU D, ZHAO K H, SONG Y Y, et al. Effect of introducing carbon fiber into AgCuTi filler on interfacial microstructure and mechanical property of C/C-TC4 brazed joints[J].Materials Characterization, 2019, 157:109890.
[32] DAI X Y, CAO J, WANG Z C, et al. Brazing ZrO2 ceramic and TC4 alloy by novel WB reinforced Ag-Cu composite filler:Microstructure and properties[J].Ceramics International, 2017, 43(17):15296-15305.
[33] LI C, CHEN L, WANG X Y, et al. Joining of yttria stabilised zirconia to Ti6Al4V alloy using novel CuO nanostructure reinforced Cu foam interlayer[J].Materials Letters, 2019, 253:105-108.
[34] 王泽宇. 碳基网络复合中间层辅助钎焊C/C复合材料与Nb机理研究[D]. 哈尔滨:哈尔滨工业大学, 2020.WANG Z Y. Study on the brazing mechanism of carbon fiber reinforced carbon composite-niobium by using carbonaceous network interlayer[D]. Harbin:Harbin Institute of Technology, 2020(in Chinese).
[35] SUN Z, ZHANG L X, ZHANG B, et al. A strategy to fabricate strength-ductility enhanced braze filler reinforced by 3-dimensional graphene sponge for joining C/C composites[J].Materials & Design, 2020, 189:108515.
[36] SONG X R, LI H J, CASALEGNO V, et al. Microstructure and mechanical properties of C/C composite/Ti6Al4V joints with a Cu/TiCuZrNi composite brazing alloy[J].Ceramics International, 2016, 42(5):6347-6354.
[37] QIN Y Q, FENG J C. Active brazing carbon/carbon composite to TC4 with Cu and Mo composite interlayers[J].Materials Science and Engineering:A, 2009, 525(1-2):181-185.
[38] ZHANG L X, ZHANG B, SUN Z, et al. Brazing of ZrB2-SiC-C and GH99 with AgCuTi/SiC interpenetrating network structural composite as an interlayer[J].Ceramics International, 2020, 46(8):10224-10232.
[39] ZHANG L X, SUN Z, CHANG Q, et al. Brazing SiO2f/SiO2 composite to Invar alloy using a novel TiO2 particle-modified composite braze filler[J].Ceramics International, 2019, 45(2):1698-1709.
[40] SONG X G, CAO J, WANG Y F, et al. Effect of Si3N4-particles addition in Ag-Cu-Ti filler alloy on Si3N4/TiAl brazed joint[J].Materials Science and Engineering:A, 2011, 528(15):5135-5140.
[41] ZHANG S S, YAN L C, GAO K W, et al. Finite element analysis of the effect of TiC or graphite modified composite fillers on the thermal residual stress of AMB ceramic substrates[J].Ceramics International, 2019, 45(15):19098-19104.
[42] XIONG J T, LI J L, ZHANG F S, et al. Direct joining of 2D carbon/carbon composites to Ti-6Al-4V alloy with a rectangular wave interface[J].Materials Science and Engineering:A, 2008, 488(1-2):205-213.
[43] SHEN Y X, LI Z L, HAO C Y, et al. A novel approach to brazing C/C composite to Ni-based superalloy using alumina interlayer[J].Journal of the European Ceramic Society, 2012, 32(8):1769-1774.
[44] GUO W, GAO T F, CUI X F, et al. Interfacial reactions and zigzag groove strengthening of C/C composite and Rene N5 single crystal brazed joint[J].Ceramics International, 2015, 41(9):11605-11610.
[45] ZHANG Y, ZOU G, LIU L, et al. Vacuum brazing of alumina to stainless steel using femtosecond laser patterned periodic surface structure[J].Materials Science and Engineering:A, 2016, 662:178-184.
[46] YUAN R, DENG S J, CUI H C, et al. Interface characterization and mechanical properties of dual beam laser welding-brazing Al/steel dissimilar metals[J].Journal of Manufacturing Processes, 2019, 40:37-45.
[47] LAUKANT H, WALLMANN C, KORTE M, et al. Flux-less joining technique of aluminium with zinc-coated steel sheets by a dual-spot-laser beam[J].Advanced Materials Research, 2005, 6-8:163-170.
[48] 封小松. 镀锌钢板激光填丝钎焊工艺与热过程数值模拟[D]. 哈尔滨:哈尔滨工业大学, 2007.FENG X S. Study on laser brazing with filler wire for galvanized steel sheets and numerical simulation of the thermal process[D]. Harbin:Harbin Institute of Technology, 2007(in Chinese).
[49] 马凯,于治水,张培磊,等. 激光作用下CuSi3在镀锌钢板表面的润湿行为研究[J].上海工程技术大学学报, 2013, 27(4):293-297.MA K, YU Z S, ZHANG P L, et al. Research on wetting behavior of Zn-coated steel with CuSi3 filler metal by laser beam[J].Journal of Shanghai University of Engineering Science, 2013, 27(4):293-297(in Chinese).
[50] GATZEN M, RADEL T, THOMY C, et al. Wetting behavior of eutectic Al-Si droplets on zinc coated steel substrates[J].Journal of Materials Processing Technology, 2014, 214(1):123-131.
[51] LI H Y, LI L Q, HUANG R R, et al. The effect of surface texturing on the laser-induced wetting behavior of AlSi5 alloy on Ti6Al4V alloy[J].Applied Surface Science, 2021, 566:150630.
[52] WEN Z L, YU G Y, LI S Q, et al. Influence of Ni/Zn double coating on the steel on penetration welding-brazing by CMT arc-laser hybrid heat source[J].Optics & Laser Technology, 2021, 134:106602.
[53] XIA H B, ZHAO X Y, TAN C W, et al. Effect of Si content on the interfacial reactions in laser welded-brazed Al/steel dissimilar butted joint[J].Journal of Materials Processing Technology, 2018, 258:9-21.
[54] YANG J, LI Y L, ZHANG H, et al. Control of interfacial intermetallic compounds in Fe-Al joining by Zn addition[J].Materials Science and Engineering:A, 2015, 645:323-327.
[55] MENG Y F, LU Y, LI Z Y, et al. Effects of beam oscillation on interface layer and mechanical properties of laser-arc hybrid lap welded Al/Mg dissimilar metals[J].Intermetallics, 2021, 133:107175.
[56] WANG C M, CUI L Y, MI G Y, et al. The influence of heat input on microstructure and mechanical properties for dissimilar welding of galvanized steel to 6061 aluminum alloy in a zero-gap lap joint configuration[J].Journal of Alloys and Compounds, 2017, 726:556-566.
[57] BORRISUTTHEKUL R, YACHI T, MIYASHITA Y, et al. Suppression of intermetallic reaction layer formation by controlling heat flow in dissimilar joining of steel and aluminum alloy[J].Materials Science and Engineering:A, 2007, 467(1-2):108-113.
[58] 夏鸿博. 铝/钢激光熔-钎焊的界面断裂行为及IMC层调控方法研究[D]. 哈尔滨:哈尔滨工业大学, 2019.XIA H B. Research on interfacial fractureing behaviors and adjusted methods of IMC layer for the laser welded-brazed Al/steel[D]. Harbin:Harbin Institute of Technology, 2019(in Chinese).
[59] YANG J, SU J H, GAO C K, et al. Effect of heat input on interfacial microstructure, tensile and bending properties of dissimilar Al/steel lap joints by laser Welding-brazing[J].Optics & Laser Technology, 2021, 142:107218.
[60] ZENG Z, OLIVEIRA J P, YANG M, et al. Functional fatigue behavior of NiTi-Cu dissimilar laser welds[J].Materials & Design, 2017, 114:282-287.
[61] LAI W J, SUNG S J, PAN J, et al. Failure mode and fatigue behavior of dissimilar laser welds in lap-shear specimens of aluminum and copper sheets[J].SAE International Journal of Materials and Manufacturing, 2014, 7(3):706-710.
[62] CORIGLIANO P, CRUPI V. Fatigue analysis of TI6AL4V/INCONEL 625 dissimilar welded joints[J].Ocean Engineering, 2021, 221:108582.
[63] 张蒙. 激光-磁场作用于铜-钢异种材料焊接的工艺研究[D]. 武汉:华中科技大学, 2019.ZHANG M. Research on copper and steel dissimilar materials welding under co-effect of laser and magnetic field[D]. Wuhan:Huazhong University of Science and Technology, 2019(in Chinese).
[64] 范聪. Hastelloy C-276/316L激光异质焊接力学及腐蚀性能研究[D]. 大连:大连理工大学, 2014.FAN C. Mechanical and corrosion properties of Hastelloy C-276/316L laser dissimilar welding[D]. Dalian:Dalian University of Technology, 2014(in Chinese).
[65] LI L Q, TAN C W, CHEN Y B, et al. CO2 laser welding-brazing characteristics of dissimilar metals AZ31B Mg alloy to Zn coated dual phase steel with Mg based filler[J].Journal of Materials Processing Technology, 2013, 213(3):361-375.
[66] LIU L M, QI X D. Effects of copper addition on microstructure and strength of the hybrid laser-TIG welded joints between magnesium alloy and mild steel[J].Journal of Materials Science, 2009, 44(21):5725-5731.
[67] 许欣. 镁合金与钢激光熔钎焊界面化学反应冶金研究[D]. 镇江:江苏科技大学, 2018.XU X. Metallurgical study on interface chemical reaction of laser melting brazing of magnesium alloy with steel[D]. Zhenjiang:Jiangsu University of Science and Technology, 2018(in Chinese).
[68] LIU L M, QI X D. Strengthening effect of nickel and copper interlayers on hybrid laser-TIG welded joints between magnesium alloy and mild steel[J].Materials & Design, 2010, 31(8):3960-3963.
[69] LIU L M, QI X D, WU Z H. Microstructural characteristics of lap joint between magnesium alloy and mild steel with and without the addition of Sn element[J].Materials Letters, 2010, 64(1):89-92.
[70] 刘晓庆. AZ31B/TC4异种金属TIG熔钎焊工艺及接头组织与性能研究[D]. 西安:西安科技大学, 2017.LIU X Q. Research on TIG welding-brazing technology of AZ31B/TC4 dissimilar metals and microstructure and properties of welded joints[D]. Xi'an:Xi'an University of Science and Technology, 2017(in Chinese).
[71] TAN C W, CHEN Y B, LI L Q, et al. Comparative study of microstructure and mechanical properties of laser welded-brazed Mg/steel joints with four different coating surfaces[J].Science and Technology of Welding and Joining, 2013, 18(6):466-472.
[72] 谭哲,刘金水,周惦武,等. 双相钢/镁合金添加Sn箔激光热传导焊及数值模拟[J].中国有色金属学报, 2016, 26(7):1427-1436.TAN Z, LIU J S, ZHOU D W, et al. Laser heat-conduction welding and numerical simulation of double phase steel/magnesium alloy with Sn foil[J].The Chinese Journal of Nonferrous Metals, 2016, 26(7):1427-1436(in Chinese).
[73] ZHOU D W, LIU J S, TAN Z, et al. Effects of Sn-foil addition on the microstructure and mechanical properties of laser welding joint for dual phase steel and magnesium alloy[J].SN Applied Sciences, 2019, 1(7):1-12.
[74] SONG G, LI T T, CHI J Y, et al. Bonding of immiscible Mg/steel by butt fusion welding[J].Scripta Materialia, 2018, 157:10-14.
[75] 檀财旺,臧乘伟,张泽群,等. 镁/钢异种金属焊接的研究现状与展望[J].热加工工艺, 2021, 50(3):1-3.TAN C W, ZANG C W, ZHANG Z Q, et al. Research status and prospect of welding for magnesium/steel dissimilar alloys[J].Hot Working Technology, 2021, 50(3):1-6(in Chinese).
[76] 张泽群,张凯平,檀财旺,等. 镁/钛异种合金焊接的研究现状与展望[J].焊接, 2017(11):21-27, 70.ZHANG Z Q, ZHANG K P, TAN C W, et al. Research status and development of welding for magnesium/titanium dissimilar alloys[J].Welding & Joining, 2017(11):21-27, 70(in Chinese).
[77] 檀财旺. 镁/钢激光熔钎焊接特性及界面合金调控技术研究[D]. 哈尔滨:哈尔滨工业大学, 2014.TAN C W. Research on laser welding-brazing characteristics of magnesium/steel and its interface control with alloying elements[D]. Harbin:Harbin Institute of Technology, 2014(in Chinese).
[78] 宋刚,迟佳玉,于景威,等. 镁/钢激光-电弧复合焊接接头的腐蚀行为[J].材料导报, 2018, 32(16):2773-2777.SONG G, CHI J Y, YU J W, et al. Corrosion behavior of Mg-steel laser-TIG hybrid welding joint[J].Materials Review, 2018, 32(16):2273-2777(in Chinese).
[79] KAWAHITO Y, NIWA Y, KATAYAMA S. Laser direct joining between stainless steel and polyethylene terephthalate plastic and reliability evaluation of joints[J].Welding International, 2014, 28(2):107-113.
[80] ZHANG Z, SHAN J G, TAN X H, et al. Improvement of the laser joining of CFRP and aluminum via laser pre-treatment[J].The International Journal of Advanced Manufacturing Technology, 2017, 90(9-12):3465-3472.
[81] RODRÍGUEZ-VIDAL E, SANZ C, LAMBARRI J, et al. Experimental investigation into metal micro-patterning by laser on polymer-metal hybrid joining[J].Optics & Laser Technology, 2018, 104:73-82.
[82] JUNG D J, CHEON J, NA S J. Effect of surface pre-oxidation on laser assisted joining of acrylonitrile butadiene styrene (ABS) and zinc-coated steel[J].Materials & Design, 2016, 99:1-9.
[83] ZHANG Z, SHAN J G, TAN X H, et al. Effect of anodizing pretreatment on laser joining CFRP to aluminum alloy A6061[J].International Journal of Adhesion and Adhesives, 2016, 70:142-151.
[84] ARAI S, KAWAHITO Y, KATAYAMA S. Effect of surface modification on laser direct joining of cyclic olefin polymer and stainless steel[J].Materials & Design, 2014, 59:448-453.
[85] GAO M, LIAO W, CHEN C. Improving the interfacial bonding strength of dissimilar PA66 plastic and 304 stainless steel by oscillating laser beam[J].Optics & Laser Technology, 2021, 138:106869.
[86] HAO K D, LIAO W, ZHANG T D, et al. Interface formation and bonding mechanisms of laser transmission welded composite structure of PET on austenitic steel via beam oscillation[J].Composite Structures, 2020, 235:111752.
[87] JIAO J K, ZOU Q, YE Y Y, et al. Carbon fiber reinforced thermoplastic composites and TC4 alloy laser assisted joining with the metal surface laser plastic-covered method[J].Composites Part B:Engineering, 2021, 213:108738.
[88] TAN C W, SU J H, FENG Z W, et al. Laser joining of CFRTP to titanium alloy via laser surface texturing[J].Chinese Journal of Aeronautics, 2021, 34(5):103-114.
[89] TAN C W, SU J H, ZHU B H, et al. Effect of scanning speed on laser joining of carbon fiber reinforced PEEK to titanium alloy[J].Optics & Laser Technology, 2020, 129:106273.
[90] SU J H, TAN C W, WU Z L, et al. Influence of defocus distance on laser joining of CFRP to titanium alloy[J].Optics & Laser Technology, 2020, 124:106006.
[91] FENG Z W, MA G L, SU J H, et al. Influence of process parameters on the joint characteristics during laser joining of aluminium alloy and CFRTP[J].Journal of Manufacturing Processes, 2021, 64:1493-1506.
[92] 王之康,高永华,徐宾. 真空电子束焊接设备及工艺[M].北京:原子能出版社, 1990.WANG Z H, GAO Y H, XU B. equipment and process of vacuum electron beam welding[M]. Beijing:Publishing House of the IAEA,1990(in Chinese).
[93] 李少青,张毓新,王学东,等. 基于电子束能量分布控制的异种金属的焊接[J].机械工程材料, 2005, 29(9):35-37, 44.LI S Q, ZHANG Y X, WANG X D, et al. Welding of dissimilar metals based on electron beam energy distribution control[J].Materials for Mechanical Engineering, 2005, 29(9):35-37, 44(in Chinese).
[94] 陈东亮,杜乐一,王英,等. 难熔金属及其合金的电子束焊接现状[J].兵器材料科学与工程, 2016, 39(6):124-127.CHEN D L, DU L Y, WANG Y, et al. Current status of electron beam welding of refractory metals and their alloys[J].Ordnance Material Science and Engineering, 2016, 39(6):124-127(in Chinese).
[95] 陈国庆,张秉刚,吴双辉,等. TC4/Ta-W合金异种金属电子束焊接[J].焊接学报, 2011, 32(8):21-24, 114.CHEN G Q, ZHANG B G, WU S H, et al. Electron beam welding of TC4/Ta-W alloys dissimilar metal[J].Transactions of the China Welding Institution, 2011, 32(8):21-24, 114(in Chinese).
[96] 陈国庆,树西,柳峻鹏,等. 真空电子束焊接技术应用研究现状[J].精密成形工程, 2018, 10(1):31-39.CHEN G Q, SHU X, LIU J P et al. Development Status of Applications of Vacuum Electron Beam Welding Technology[J].Journal of Netshape Forming Engineering, 2018, 10(1):31-39(in Chinese).
[97] GUO S, ZHOU Q, KONG J, et al. Effect of beam offset on the characteristics of copper/304 stainless steel electron beam welding[J].Vacuum, 2016, 128:205-212.
[98] 张秉刚,冯吉才,吴林,等. 铬青铜与双相不锈钢电子束熔钎焊接头形成机制[J].焊接学报,2005, 26(2):17-20, 24.ZHANG B G, FENG J C, WU L, et al. Formation mechanism of electron beam melt-brazed joint of chromium-bronze and duplex phase stainless steel[J].Transactions of the China Welding Institution, 2005, 26(2):17-20, 24(in Chinese).
[99] ZHANG B G, ZHAO J, LI X P, et al. Effects of filler wire on residual stress in electron beam welded QCr0.8 copper alloy to 304 stainless steel joints[J].Applied Thermal Engineering, 2015, 80:261-268.
[100] 张秉刚,何景山,曾如川,等. LF2铝合金与Q235钢加入中间Cu层电子束焊接接头组织及形成机理[J].焊接学报, 2007, 28(6):37-40, 115.ZHANG B G, HE J S, ZENG R C, et al. Microstructures and formation of EBW joint of aluminum alloy LF2 to steel Q235 with transition metal Cu[J].Transactions of the China Welding Institution, 2007, 28(6):37-40, 115(in Chinese).
[101] 倪家强,张秉刚,张春光. 铝/AlSi7/钢电子束焊接接头组织与性能研究[J].焊接, 2012(12):35-37, 46, 74.NI J Q, ZHANG B G, ZHANG C G. Microstructure and mechanical properties of aluminum alloy/AlSi7/stainless steel electron beam welded joints[J].Welding & Joining, 2012(12):35-37, 46, 74(in Chinese).
[102] 王廷,张秉刚,冯吉才,等. 钢侧偏束电子束焊接纯铝/Q235异种金属接头试验[J].焊接学报, 2014, 35(6):69-72, 116.WANG T, ZHANG B G, FENG J C, et al. Experimental study of electron beam welded pure aluminum to Q235 steel joint with beam deflection[J].Transactions of the China Welding Institution, 2014, 35(6):69-72, 116(in Chinese).
[103] WANG T, ZHANG B G, WANG H Q, et al. Microstructures and mechanical properties of electron beam-welded titanium-steel joints with vanadium, nickel, copper and silver filler metals[J].Journal of Materials Engineering and Performance, 2014, 23(4):1498-1504.
[104] WANG T, ZHANG B G, CHEN G Q, et al. High strength electron beam welded titanium-stainless steel joint with V/Cu based composite filler metals[J].Vacuum, 2013, 94:41-47.
[105] LIU W, ZHANG B G, HE J S, et al. Microstructure and performance of dissimilar joint QCr0.8/TC4 welded by uncentered electron beam[J].Rare Metals, 2007, 26:344-348.
[106] GUO S, ZHOU Q, PENG Y, et al. Study on strengthening mechanism of Ti/Cu electron beam welding[J].Materials & Design, 2017, 121:51-60.
[107] HAN K, WANG T, TANG Q, et al. Effect of Cu66V34 filler thickness on the microstructure and properties of titanium/copper joint by electron beam welding[J].Journal of Materials Processing Technology, 2019, 267:103-113.
[108] KIM J, KAWAMURA Y. Electron beam welding of Zr-based BMG/Ni joints:Effect of beam irradiation position on mechanical and microstructural properties[J].Journal of Materials Processing Technology, 2008, 207(1-3):112-117.
[109] KAWAMURA Y, KAGAO S, OHNO Y. Electron beam welding of Zr-based bulk metallic glass to crystalline Zr metal[J].Materials Transactions, 2001, 42(12):2649-2651.
[110] KIM J, KAWAMURA Y. Electron beam welding of the dissimilar Zr-based bulk metallic glass and Ti metal[J].Scripta Materialia, 2007, 56(8):709-712.
[111] MING H L, ZHANG Z M, WANG J Q, et al. Microstructure of a safe-end dissimilar metal weld joint (SA508-52-316L) prepared by narrow-gap GTAW[J].Materials Characterization, 2017, 123:233-243.
[112] SARIKKA T, AHONEN M, MOUGINOT R, et al. Effect of mechanical mismatch on fracture mechanical behavior of SA 508-Alloy 52 narrow gap dissimilar metal weld[J].International Journal of Pressure Vessels and Piping, 2017, 157:30-42.
[113] WANG P, HU S S, SHEN J Q, et al. Effects of electrode positive/negative ratio on microstructure and mechanical properties of Mg/Al dissimilar variable polarity cold metal transfer welded joints[J].Materials Science and Engineering:A, 2016, 652:127-135.
[114] CAO R, YU G, CHEN J H, et al. Cold metal transfer joining aluminum alloys-to-galvanized mild steel[J].Journal of Materials Processing Technology, 2013, 213(10):1753-1763.
[115] XU P Z, HUA X M, CHEN N N, et al. Effect of the microstructure of IMCs and zinc accumulation on the mechanical properties of aluminum/galvanized steel joints in the VP-CMT process[J].Journal of Manufacturing Processes, 2020, 58:894-904.
[116] MEZRAG B, DESCHAUX-BEAUME F, SABATIER L, et al. Microstructure and properties of steel-aluminum cold metal transfer joints[J].Journal of Materials Processing Technology, 2020, 277:116414.
[117] 曹睿,朱海霞,王清,等. 镁/钢异种金属CMT对接熔钎焊连接机理[J].焊接学报, 2016, 37(5):37-40, 130.CAO R, ZHU H X, WANG Q, et al. Joining mechanisms of Mg-steel butt welded joints by cold metal transfer method[J].Transactions of the China Welding Institution, 2016, 37(5):37-40, 130(in Chinese).
[118] KUMAR T, KIRAN D V, CHEON J, et al. Probing the influence of cold wire gas tungsten arc welding current waveforms on the aluminum-steel joining[J].Journal of Manufacturing Processes, 2020, 59:378-388.
[119] SU Y C, HUA X M, WU Y X. Quantitative characterization of porosity in Fe-Al dissimilar materials lap joint made by gas metal arc welding with different current modes[J].Journal of Materials Processing Technology, 2014, 214(1):81-86.
[120] 石玗,周相龙,朱明,等. 铝/铜异种金属脉冲旁路耦合电弧MIG熔钎焊接头的组织与力学性能[J].中国有色金属学报, 2017, 27(9):1816-1822.SHI Y, ZHOU X L, ZHU M, et al. Microstructure and mechanical properties of Al/Cu dissimilar metals pulsed DE-MIG welding-brazing joint[J].The Chinese Journal of Nonferrous Metals, 2017, 27(9):1816-1822(in Chinese).
[121] HUANG J K, HE X Y, GUO Y N, et al. Joining of aluminum alloys to galvanized mild steel by the pulsed DE-GMAW with the alternation of droplet transfer[J].Journal of Manufacturing Processes, 2017, 25:16-25.
[122] MIAO Y G, MA Z W, YANG X S, et al. Experimental study on microstructure and mechanical properties of AA6061/Ti-6Al-4V joints made by bypass-current MIG welding-brazing[J].Journal of Materials Processing Technology, 2018, 260:104-111.
[123] 秦国梁,武传松. 铝合金/钢异种材料熔钎焊接工艺及其研究现状[J].机械工程学报, 2016, 52(24):24-35.QIN G L, WU C S. State-of-art of brazing-fusion welding processes of dissimilar metals between aluminum alloy and steel[J].Journal of Mechanical Engineering, 2016, 52(24):24-35(in Chinese).
[124] DONG H G, HU W J, DUAN Y P, et al. Dissimilar metal joining of aluminum alloy to galvanized steel with Al-Si, Al-Cu, Al-Si-Cu and Zn-Al filler wires[J].Journal of Materials Processing Technology, 2012, 212(2):458-464.
[125] HE H, LIN S B, YANG C L, et al. Combination effects of nocolok flux with Ni powder on properties and microstructures of aluminum-stainless steel TIG welding-brazing joint[J].Journal of Materials Engineering and Performance, 2013, 22(11):3315-3323.
[126] LIU L M, LIU F. Effect of Ce on microstructure and properties of Mg/Al butt joint welded by gas tungsten arc with Zn-30Al-xCe filler metal[J].Science and Technology of Welding and Joining, 2013, 18(5):414-420.
[127] JIN P, LIU Y B, SUN Q J, et al. Wetting mechanism and microstructure evolution of TC4/304 stainless steel joined by CMT with an assisted hybrid magnetic field[J].Journal of Alloys and Compounds, 2020, 819:152951.
[128] SUN Q J, LI J Z, LIU Y B, et al. Arc characteristics and droplet transfer process in CMT welding with a magnetic field[J].Journal of Manufacturing Processes, 2018, 32:48-56.
[129] MOU G, HUA X M, WANG M, et al. Effect of axial magnetic field on cold metal transfer arc-brazing of Ti6Al4V to 304L steel[J].Journal of Materials Processing Technology, 2020, 275:116322.
[130] XU C, SHENG G, WANG H, et al. Reinforcement of Mg/Ti joints using ultrasonic assisted tungsten inert gas welding-brazing technology[J].Science and Technology of Welding and Joining, 2014, 19(8):703-707.
[131] WU K L, YUAN X J, LI T, et al. Effect of ultrasonic vibration on TIG welding-brazing joining of aluminum alloy to steel[J].Journal of Materials Processing Technology, 2019, 266:230-238.
[132] ZHENG Y, HUANG J H, CHENG Z, et al. Combined effects of MIG and TIG arcs on weld appearance and interface properties in Al/steel double-sided butt welding-brazing[J].Journal of Materials Processing Technology, 2017, 250:25-34.
[133] MA H, QIN G L, WANG L Y, et al. Effects of preheat treatment on microstructure evolution and properties of brazed-fusion welded joint of aluminum alloy to steel[J].Materials & Design, 2016, 90:330-339.
[134] MISHRA R S, MA Z Y. Friction stir welding and processing[J].Materials Science and Engineering:R:Reports, 2005, 50(1-2):1-78.
[135] MORISADA Y, IMAIZUMI T, FUJII H. Clarification of material flow and defect formation during friction stir welding[J].Science and Technology of Welding and Joining, 2015, 20(2):130-137.
[136] MORISADA Y, IMAIZUMI T, FUJII H. Determination of strain rate in Friction Stir Welding by three-dimensional visualization of material flow using X-ray radiography[J].Scripta Materialia, 2015, 106:57-60.
[137] LI J Q, LIU H J. Characteristics of the reverse dual-rotation friction stir welding conducted on 2219-T6 aluminum alloy[J].Materials & Design, 2013, 45:148-154.
[138] LI J Q, LIU H J. Effects of tool rotation speed on microstructures and mechanical properties of AA2219-T6 welded by the external non-rotational shoulder assisted friction stir welding[J].Materials & Design, 2013, 43:299-306.
[139] LIU H J, ZHANG H J, YU L. Effect of welding speed on microstructures and mechanical properties of underwater friction stir welded 2219 aluminum alloy[J].Materials & Design, 2011, 32(3):1548-1553.
[140] LIU H J, HU Y Y, WANG H, et al. Stationary shoulder supporting and tilting pin penetrating friction stir welding[J].Journal of Materials Processing Technology, 2018, 255:596-604.
[141] CHEN J, UEJI R, FUJII H. Double-sided friction-stir welding of magnesium alloy with concave-convex tools for texture control[J].Materials & Design, 2015, 76:181-189.
[142] KUMAR S, WU C S, PADHY G K, et al. Application of ultrasonic vibrations in welding and metal processing:A status review[J].Journal of Manufacturing Processes, 2017, 26:295-322.
[143] HU Y Y, LIU H J, FUJII H. Improving the mechanical properties of 2219-T6 aluminum alloy joints by ultrasonic vibrations during friction stir welding[J].Journal of Materials Processing Technology, 2019, 271:75-84.
[144] FERNANDEZ G J, MURR L E. Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite[J].Materials Characterization, 2004, 52(1):65-75.
[145] CUI L, FUJII H, TSUJI N, et al. Friction stir welding of a high carbon steel[J].Scripta Materialia, 2007, 56(7):637-640.
[146] MIRONOV S, SATO Y S, KOKAWA H. Friction-stir welding and processing of Ti-6Al-4V titanium alloy:A review[J].Journal of Materials Science & Technology, 2018, 34(1):58-72.
[147] ZHU Z G, SUN Y F, GOH M H, et al. Friction stir welding of a CoCrFeNiAl0.3 high entropy alloy[J].Materials Letters, 2017, 205:142-144.
[148] PARK S, NAM H, PARK J, et al. Superior-tensile property of CoCrFeMnNi alloys achieved using friction-stir welding for cryogenic applications[J].Materials Science and Engineering:A, 2020, 788:139547.
[149] WANG T H, SHUKLA S, KOMARASAMY M, et al. Towards heterogeneous AlxCoCrFeNi high entropy alloy via friction stir processing[J].Materials Letters, 2019, 236:472-475.
[150] 陈玉华,谢吉林,戈军委,等. 铝/镁异种金属搅拌摩擦焊研究现状及发展趋势[J].精密成形工程, 2015, 7(5):25-33.CHEN Y H, XIE J L, GE J W, et al. Study status and development trends of friction stir welding of Al/Mg dissimilar metals[J].Journal of Netshape Forming Engineering, 2015, 7(5):25-33(in Chinese).
[151] XU Y, KE L M, MAO Y Q, et al. Formation investigation of intermetallic compounds of thick plate Al/Mg alloys joint by friction stir welding[J].Materials, 2019, 12(17):2661.
[152] FU B L, QIN G L, LI F, et al. Friction stir welding process of dissimilar metals of 6061-T6 aluminum alloy to AZ31B magnesium alloy[J].Journal of Materials Processing Technology, 2015, 218:38-47.
[153] MOFID M A, ABDOLLAH-ZADEH A, MALEK GHAINI F. The effect of water cooling during dissimilar friction stir welding of Al alloy to Mg alloy[J].Materials & Design, 2012, 36:161-167.
[154] MOFID M A, ABDOLLAH-ZADEH A, GVR C H. Investigating the formation of intermetallic compounds during friction stir welding of magnesium alloy to aluminum alloy in air and under liquid nitrogen[J].The International Journal of Advanced Manufacturing Technology, 2014, 71(5-8):1493-1499.
[155] ABDOLLAHZADEH A, SHOKUHFAR A, CABRERA J M, et al. The effect of changing chemical composition on dissimilar Mg/Al friction stir welded butt joints using zinc interlayer[J].Journal of Manufacturing Processes, 2018, 34:18-30.
[156] 黄永宪,黄体方,万龙,等. 铝/钢异种材料搅拌摩擦焊研究进展[J].精密成形工程, 2018, 10(1):23-30.HUANG Y X, HUANG T F, WAN L, et al. Research progress of dissimilar friction stri welding between aluminium and steel[J].Journal of Netshape Forming Engineering, 2018, 10(1):23-30(in Chinese).
文章导航

/