机器人先进制造与装配技术专栏

机器人型装备在航空装配中的应用现状与研究展望

  • 王皓 ,
  • 陈根良
展开
  • 1. 上海交通大学 上海市复杂薄板结构数字化制造重点实验室, 上海 200240;
    2. 上海交通大学 机械系统与振动国家重点实验室, 上海 200240

收稿日期: 2021-07-19

  修回日期: 2021-08-11

  网络出版日期: 2021-12-09

基金资助

国家重点研发计划(2019YFA0709001);国防基础科研项目(JCKY2017203A007);国家自然科学基金(52022056)

Research progress and perspective of robotic equipment applied in aviation assembly

  • WANG Hao ,
  • CHEN Genliang
Expand
  • 1. Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures, Shanghai Jiao Tong University, Shanghai 200240, China;
    2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 2021-07-19

  Revised date: 2021-08-11

  Online published: 2021-12-09

Supported by

National Key R&D Program of China (2019YFA0709001);Defense Industrial Technology Development Program (JCKY2017203A007);National Natural Science Foundation of China (52022056)

摘要

机器人型装备具有自动化程度高、运动灵活性好、定位精度高以及生产布置柔性等诸多优势,在航空产品装配工艺环节具有广泛应用。从大型部件自动化对接、机器人装配理论、人机协作互动装配、柔性自适应工装夹具、人工智能辅助装配以及自动引导车等方面,综述了机器人型装备在航空产品自动化装配环节的应用现状。在此基础上,详细分析了机构构型在对接装配类装备中的演进历程与发展趋势,并从应用场景、技术成熟度以及装备性能等方面系统地比较了国内外航空工业在自动化装配领域的技术差距。最后,概括总结了航空装配中机器人型装备的技术挑战、发展趋势以及与工业4.0、智能制造等新兴技术相融合的发展机遇。

本文引用格式

王皓 , 陈根良 . 机器人型装备在航空装配中的应用现状与研究展望[J]. 航空学报, 2022 , 43(5) : 626128 -626128 . DOI: 10.7527/S1000-6893.2021.26128

Abstract

Robotic equipment has many advantages, such as high level of automation, good movement flexibility, high positioning accuracy, and flexible production layout. Besides, it has a wide range of applications in the assembly process of aviation products. This paper summarizes the application status of robotic equipment in the automated assembly of aerospace products from the automatic docking equipment for large parts, robot assembly theory, human-machine collaboration technology, aero engine automatic assembly systems, artificial intelligence auxiliary systems and AGV. On this basis, this paper analyzes the evolution process and development trend of mechanism configuration in docking assembly equipment in detail, and systematically compares the technological gap between domestic and foreign aviation industry in the field of automatic assembly from the aspects of application scenarios, technology maturity and equipment performance. Finally, this paper summarizes the technical challenges and development trends of robotic equipment in aviation assembly, as well as the development opportunities that integrate with emerging technologies such as Industry 4.0 and intelligent manufacturing.

参考文献

[1] 邹冀华, 刘志存, 范玉青. 大型飞机部件数字化对接装配技术研究[J]. 计算机成制造系统, 2007, 13(7):1367-1373. ZOU J H, LIU Z C, FAN Y Q. Large-size airplane parts digital assembly technology[J]. Computer Integrated Manufacturing Systems, 2007, 13(7):1367-1373(in Chinese).
[2] 黄翔, 李泷杲, 陈磊, 等. 民用飞机大部件数字化对接关键技术[J]. 航空制造技术, 2010(3):54-56. HUANG X, LI L G, CHEN L, et al. Key technologies of digital final assembly for civil aircraft[J]. Aeronautical Manufacturing Technology, 2010(3):54-56(in Chinese).
[3] AUSTIN W. Assembly automation takes off in aerospace industry[EB/OL]. (2015-04-02)[2021-09-05]. https://www.assemblymag.com/articles/92790-assembly-autom-ation-takes-off-in-aerospace-industry.
[4] HARTMANN J, MEEKER C, WELLER M. Determinate assembly of tooling allows concurrent design of airbus wings and major assembly fixtures[J]. SAE Technical Paper, 2004(1):28-32.
[5] ZETU D, BANERJEE P, THOMPSON D. Extended-range hybrid tracker and applications to motion and camera tracking in manufacturing systems[J]. IEEE Transactions on Robotics and Automation, 2000, 16(3):281-293.
[6] MULLER R, ESSER M, VETTE M. Reconfigurable handling systems as an enabler for large components in mass customized production[J]. Journal of Intelligent Manufacturing, 2013, 24(5):977-990.
[7] MCKEOWN C, WEBB P. A reactive reconfigurable tool for aerospace structures[J]. Assembly Automation, 2011, 31(4):334-343.
[8] JAYAWEERA N, WEBB P. Adaptive robotic assembly of compliant aero-structure components[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(2):180-194.
[9] MILLAR A, KIHLMAN H. Reconfigurable flexible tooling for aerospace wing assembly[R]. 2009.
[10] TOM P. Airbus A330/A340 assembly 0185[EB/OL]. (2008-05-07)[2021-09-05]. https://www.flickr.com/photos/news46/2498803863.
[11] BROCTJE A. The art of precious joining[EB/OL]. (2018-08-31)[2021-09-05]. https://broetje-automation.tw/cn/equipment/assembly-systems/fuestation/#flac.
[12] 王建华. 飞机总装对接技术[J]. 航空制造技术, 2010(2):32-35. WANG J H. Aircraft assembly docking technology[J]. Aeronautical Manufacturing Technology, 2010(2):32-35(in Chinese).
[13] 许国康. 飞机大部件数字化对接技术[J]. 航空制造技术, 2009(24):42-45. XU G K. Digital docking technology for large aircraft parts[J]. Aeronautical Manufacturing Technology, 2009(24):42-45(in Chinese).
[14] NAING S, CORBETT J. Feature based design for jigless assembly[D]. Cranfield:Cranfield University, 2004.
[15] 李强, 张志博, 申定贤, 等. 新一代大型运载火箭总装数字化对接技术综述[J]. 科技与创新, 2019(4):100-101. LIQ, ZHANG Z B, SHEN D X, et al. Overview of the digital docking technology in the final assembly of the new generation large carrier rocket[J]. Technology and Innovation, 2019(4):100-101(in Chinese).
[16] 郭恩明. 国外飞机柔性装配技术[J]. 航空制造技术, 2005(9):8-32. GUO E M. Foreign aircraft flexible assembly technology[J].Aeronautical Manufacturing Technology, 2005(9):28-32(in Chinese).
[17] AMY K. SpaceX delays dragon demo, raises $50M from investors[EB/OL]. (2010-11-08)[2021-09-05]. https://spacenews.com/spacex-delays-dragon-demo-raises-50m-investors/.
[18] 郭志敏, 蒋君侠, 柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报, 2009, 30(7):1319-1324. GUO Z M, JIANG J X, KE Y L. Posture alignment for large aircraft parts based on three POGO sticks distr-ibuted support[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1319-1324(in Chinese).
[19] 郭志敏, 蒋君侠, 柯映林. 一种精密三坐标POGO柱设计与精度研究[J]. 浙江大学学报, 2009, 43(9):1649-1654. GUO Z M, JIANG J X, KE Y L. Design and accuracy for POGO stick with three-axis[J]. Journal of Zhejiang University, 2009,43(9):1649-1654(in Chinese).
[20] 蒋君侠, 陈琪, 方强, 等. 三坐标定位器系统动态特性分析和实验[J]. 计算机集成制造系统, 2009, 15(5):1004-1009. JIANG J X, CHEN Q, FANG Q, et al. Analysis and experimental test on dynamic characteristic of 3-axis positioner system[J]. Computer Integrated Manufacturing Systems, 2009, 15(5):1004-1009(in Chinese).
[21] 梅中义, 朱三山, 杨鹏. 飞机数字化柔性装配中的数字测量技术[J]. 航空制造技术, 2011(17):44-49. MEI Z Y, ZHU S S, YANG P. Digital measurement of aircraft digital flexible assembly[J]. Aeronautical Manufacturing Technology, 2011(17):72-75(in Chinese).
[22] 郭洪杰. 飞机大部件自动对接装配技术[J]. 航空制造技术, 2013(13):72-75. GUO H J. Automated joint assembly technology for large structure of aircraft[J]. Assembly Technology, 2013(13):72-75(in Chinese).
[23] 陈根良. 操作机构尺寸与变形误差传递的统一建模方法研究[D]. 上海:上海交通大学, 2014. CHEN G L. Aunified error transmission model of robot manipulators considering both kinematic and deformation errors[D]. Shanghai:Shanghai Jiao Tong University, 2014(in Chinese).
[24] 王皓, 陈根良, 黄顺舟, 等. 面向最优匹配位置的大部件自动对接装配综合评价指标[J]. 机械工程学报, 2017, 53(23):137-146. WANG H, CHEN G L, HUANG S Z, et al. Evaluation index framework of optimal matching position for large components automatic assembly[J]. Journal of Mechanical Engineering, 2017, 53(23):137-146(in Chinese).
[25] 李锦程. 基于力控制的飞机大部件多移载工装移动搬运系统设计[D]. 上海:上海交通大学, 2020. LI J C. Design of the mobile handling system of the large aircraft parts based on the force control[D]. Shanghai:Shanghai Jiao Tong University, 2020(in Chinese).
[26] 周炜. 飞机自动化装配工业机器人精度补偿方法与实验研究[D]. 南京:南京航空航天大学, 2012. ZHOU W. Compensation method of industrial robot accuracy and experimental research for aircraft automated assembly[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012(in Chinese).
[27] 郭洪杰. 大型飞机柔性装配技术[J]. 航空制造技术, 2010(18):52-54. GUO H J. Flexible assembly technology for large aircraft[J]. Assembly Technology, 2010(18):52-54(in Chinese).
[28] 梁涛. 飞机柔性装配误差累积与容差分析技术研究[D]. 沈阳:沈阳航空航天大学, 2013. LIANG T. Research on error stack-up and tolerance analysis for flexible assembly[D]. Shenyang:Shenyang Aerospace University, 2013(in Chinese).
[29] 李绣峰, 刘桂雄, 谢存禧, 等. 机器人螺纹柔性装配中螺纹可装配性的几何分析[J]. 光学精密工程, 1998, 6(5):48-54. LI X F, LIU G X, XIE C X, et al. The assembling ability geometric analysis of flexible[J]. Optics and Precision Engineering, 1998, 6(5):48-54(in Chinese).
[30] 林嘉. 基于子结构的飞机机体柔性薄壁件装配精度分析方法研究[D]. 上海:上海交通大学, 2018. LIN J. Compliant assembly variation analysis of aeronautical thin-walled structure based on the substructuring technique[D].Shanghai:Shanghai Jiao Tong University, 2018(in Chinese).
[31] 朱澄澄. 面向遥操作的力反馈人机交互技术研究[D].南京:东南大学, 2018. ZHU D D. Research on human-computer interaction technology with force feedback for teleoperation[D].Nanjing:Southeast University, 2018(in Chinese).
[32] 邹鹏. 工业机器人柔顺轴孔装配方法研究[D]. 杭州:浙江大学, 2020. ZOU P. Research on compliance peg-in-hole assembly method of industrial robot[D]. Hangzhou:Zhejiang University, 2020(in Chinese).
[33] 周彬. 基于一维力感知的航天特种阀阀芯装配方法研究[D]. 苏州:苏州大学, 2019. ZHOU B. Research on aerospace special valve spool assembly based on one-dimensional force sensing[D].Suzhou:Soochow University, 2019(in Chinese).
[34] 吴遥. 基于六维力传感器的柔顺装配理论与实验研究[D]. 秦皇岛:燕山大学, 2012. WU Y. Theory and experiment research of compliance assemble based on six-component force sensor[D].Qinhuangdao:Yanshan University, 2012(in Chinese).
[35] 吴丹, 赵安安, 陈恳, 等. 协作机器人及其在航空制造中的应用综述[J]. 航空制造技术, 2019, 62(10):24-34. WU D, ZHAO A A, CHEN K, et al. A survey of collaborative robot for aircraft manufacturing application[J]. Aeronautical Manufacturing Technology, 2019, 62(10):24-34(in Chinese).
[36] ZHAW. ECHORD:Human-robot collaboration in airplane assembly[EB/OL]. (2015-11-29)[2021-07-06]. https://www.zhaw.ch/en/engineering/institutes-centres/ims/robotics-automation/echord/.
[37] MUELLER R, VETTE M, DEENEN A, et al. Improving working conditions in aircraft productions using human robot-collaboration in a collaborative riveting process[R]. 2017.
[38] MUIJS L, SNIJDERS M. Collaborative robot applications at GKN Aerospace's Fokker business[R]. 2017.
[39] MEIßNER D W I J, SCHMATZ M S F, BEUß D I F, et al. Smart human-robot-collaboration in mechanical joining processes[J]. Procedia Manufacturing, 2018, 24:264-270.
[40] JODY M. Airbus automates A320 structural assembly[EB/OL]. (2019-11-15)[2021-09-06]. https://www.engineering.com/story/airbus-automates-a320-structural-assembly.
[41] 布仁, 孙刚, 胡瑞钦, 等. 航天器机械臂柔性力控辅助装配方法[J]. 航天器环境工程, 2014, 31(4):430-435. BU R, SUN G, HU R Q, et al. Flexible force control on robot arm for spacecraft assembly[J]. Spacecraft Environment Engineering, 2014, 31(4):430-435(in Chinese).
[42] 王杰鹏, 谢永权, 宋涛, 等. 力觉交互控制的机械臂精密位姿控制技术[J]. 机械设计与研究, 2019, 35(4):47-52. WANG J P, XIE Y Q, SONG T, et al. A precise robot control technology for satellite assembly based on force interaction control[J]. Machine Design & Research, 2019, 35(4):47-52(in Chinese).
[43] 汤海洋, 纪柱, 李论. 基于力反馈牵引力导引的机器人辅助装配技术研究[J]. 制造业自动化, 2021, 43(3):9-13. TANG H Y, JI Z, LI L. Research on robot assisted assembly technology based on force feedback traction guidance[J]. Manufacturing Automation, 2021, 43(3):9-13(in Chinese).
[44] 刘仁伟, 徐晓辉, 谢永权, 等. 基于机械臂辅助的卫星柔顺装配技术研究[J]. 机电工程, 2020, 37(5):532-536. LIU R W, XU X H, XIE Y Q, et al. Compliant assembly technology of satellite assisted by robot arm[J]. Mechanical & Electrical Engineering Magazine, 2020, 37(5):532-536(in Chinese).
[45] 冯子明. 飞机数字化装配技术[M]. 北京:航空工业出版社, 2015:10-50. FENG Z M. Aircraft digital assembly technology[M]. Beijing:Aviation Industry Press, 2015:10-50(in Chinese).
[46] MARGUET B, RIBERE B. Measurement-assisted assembly applications on airbus final assembly lines[R]. 2003.
[47] WILLIAMS G, CHALUPA E, BILLIEU R, et al. Gaugeless tooling[R]. 1998.
[48] RVSCHER O, MAYLÄNDER H. Automated alignment and marry-up of aircraft fuselage sections with a final assembly Line[R]. 2001.
[49] NORRIS G, WAGNER M. Modern Boeing jetliners[M]. MBI Publishing Company, 1999:133.
[50] CHANG E K, VANCE J M. Collision detection an-d part interaction modeling to facilitate immersive virtual assembly methods[J]. Journal of Computing and Information Science in Engineering, 2004, 4(2):83-90.
[51] 张秋月, 安鲁陵. 虚拟现实和增强现实技术在飞机装配中的应用[J]. 航空制造技术, 2017(11):40-45. ZHANG Q Y, AN L L. Application of virtual reality and augment reality in aircraft assembly[J]. Aeronautical Manufacturing Technology, 2017(11):40-45(in Chinese).
[52] AGVERA M, GINGERICH E. Airbus group unit testia to supply augmented reality system to spirit aerosystems[EB/OL]. (2016-04-11)[2021-06-05].https://www.airbus.com/newsroom/pressreleases/en/2016/04/Airbus-Group-Unit-Testia-to-Supply-To-Spirit-AeroSystems.html.
[53] ROTTEMBOURG D. Did you know:MiRA, airbus' augmented reality application is made available by Testia[EB/OL]. (2021-02-08)[2021-06-05]. https://www.testia.com/news/mira-airbus-available-through-testia-smartmixedreality/.
[54] DRAFTING M. Airbus A380:a challenge of moun-ting large scale[EB/OL]. (2008-07-05)[2021-08-25] https://www.interempresas.net/Medicion/Articulos/21947-Airbus-A380-un-reto-de-montaje-a-gran-escala.html.
[55] ADVANCED I T. AIT final assembly systems for 787[EB/OL]. (2015-08-11)[2021-09-05] https://www.aint.com/home.
[56] 郭洪杰. 浅谈数字化测量技术在飞机装配中的应用[J]. 航空制造技术, 2011(21):26-29. GUO H J. Talking about theapplication of digital measurement technology in aircraft assembly[J]. Aeronautical Manufacturing Technology, 2011(21):26-29(in Chinese).
[57] ADVANCED I T. Boeing 787 final assembly[EB/OL]. (2015-08-26)[2021-08-25] https://www.aint.com/projects/assembly_alignment_projects/boeing_787_final_assembly.
[58] 曲巍崴, 董辉跃, 柯映林. 机器人辅助飞机装配制孔中位姿精度补偿技术[J]. 航空学报, 2011, 32(10):1951-1960. QU W W, DONG H Y, KE Y L. Pose accuracy com-pensation technology in robot-aided aircraft assembly drilling process[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1951-1960(in Chinese).
[59] CHENG L, WANG Q, LI J, et al. A posture evaluation method for a large component with thermal deformation and its application in aircraft assembly[J]. Assembly Automation, 2014, 34(3):275-284.
[60] 联想中国. 助力智慧中国, 不唠嗑, 咱实干![EB/OL]. (2019-04-04)[2021-09-05]. https://www.sohu.com/a/306024761_120056399 LENOVO CHINA. Help smart China, don't chat, let's do it![EB/OL]. (2019-04-04)[2021-09-05]. https://www.sohu.com/a/306024761_120056399(in Chinese).
[61] 毛世杰. 晨星AR大飞机辅助装配系统研发及应用[M]. 北京:北京联想软件有限公司, 2019. MAO S J. Development and application of morning star AR large aircraft auxiliary assembly system[M]. Beijing:Beijing Lenovo Software Co., Ltd., 2019(in Chinese).
[62] 尹旭悦, 范秀敏, 王磊, 等. 航天产品装配作业增强现实引导训练系统及应用[J]. 航空制造技术, 2018, 61(Z1):48-53. YI X Y, FAN X M, WANG L, et al. Augmented reality guidance training system for aerospace product assembly operations and its applications[J].Aeronautical Manufacturing Technology, 2018, 61(Z1):48-53(in Chinese).
[63] 唐健钧, 叶波, 耿俊浩. 飞机装配作业AR智能引导技术探索与实践[J]. 航空制造技术, 2019, 62(8):22-27. TANG J J, YE B, GENG J H. Exploration and practice of aircraft assembly AR intelligent pilot technology[J]. Aeronautical Manufacturing Technology, 2019, 62(8):22-27(in Chinese).
[64] DEVLIEG R. High-accuracy robotic drilling/milling of 737 inboard flaps[J]. SAE International Journal of Aerospace, 2011, 4(2):1373-1379.
[65] 冯华山, 秦现生, 王润孝. 航空航天制造领域工业机器人发展趋势[J]. 航空制造技术, 2013(19):32-37. FENG H S, QIN X S, WANG R X. Developingtrend of industrial robot in aerospace manufacturing industry[J]. Aeronautical Manufacturing Technology, 2013(19):32-37(in Chinese).
[66] MURPHY C N, YATES J A. The International Organization for Standardization (ISO):global governance through voluntary consensus[M]. 2009.
[67] 付乐, 武睿, 赵杰. 协作机器人安全规范:ISO/TS 15066的演变与启示[J]. 机器人, 2017, 39(4):532-540. FU L, WU R, ZHAO J. The evolution and enlight-enment of safety specification of cooperative robots:ISO/TS 15066[J]. Robot, 2017, 39(4):532-540(in Chinese).
[68] 汪满新, 黄田. 1T2R3自由度并联机构拓扑结构综合[J]. 机械工程学报, 2015, 51(17):1-7. WANG M X, HUANG T, Type synthesis of 1T2R 3-DOF parallel mechanism[J]. Journal of Mechanical Engineering, 2015, 51(17):1-7(in Chinese).
[69] XIE F, LIU X J, YOU Z, et al. Type synthesis of 2T1R-type parallel kinematic mechanisms and the application in manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2014, 30(1):1-10.
[70] 王友渔, 黄田. Tricept机械手静刚度解析建模方法[J]. 机械工程学报, 2008, 44(8):13-19. WANG Y Y, HUANG T. Analytical method for stiffness modeling for the Tricept robot[J]. Journal of Mechanical Engineering, 2008, 44(8):13-19(in Chinese).
[71] OLAZAGOITIA J L, WYATT S. New PKM Tricept T9000 and its application to flexible manufacturing at aerospace industry[R]. 2007.
[72] 马政伟, 李卫东, 万敏, 等. 飞机侧壁部件装配调姿机构的设计与分析[J]. 北京航空航天大学学报, 2014, 40(2):280-284. MA Z W, LI W D, WAN M,et al. Design and analysis of flexible fixture for aircraft side panels[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(2):280-284(in Chinese).
[73] 潘国威, 陈文亮, 王珉. 应用于飞机装配的并联机构技术发展综述[J]. 航空学报, 2019, 40(1):522572. PAN G W, CHEN W L, WANG M. A review of parallel kinematic mechanism technology for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(01):522572(in Chinese).
[74] NICK J. Photos:These snake-like robot arms look like something out of sci-fi movie[EB/OL]. (2011-11-29)[2021-09-05]. https://www.businessinsider.com/photos-check-out-this-crazy-british-snake-robot-2011-11.
[75] 丁韬. TORRESMILL和TORRESTOOL系统蒙皮切边钻铣床及柔性夹具装置[J]. 航空制造技术, 2007(2):108-109. DING T. TorresMill and Torrestool systems skin trimming drilling and milling machine and flexible fixture device[J]. AeronauticalManufacturing Technology, 2007(2):108-109(in Chinese).
[76] 白新宇, 王思聪. 飞机壁板类组件柔性工装系统研究[J]. 制造业自动化, 2014, 36(22):133-135. BAI X Y, WANG S C. Research on flexible tooling system of aircraft panelcomponents[J]. Manufacturing Automation, 2014, 36(22):133-135(in Chinese).
[77] 屈力刚, 陈国涛, 苏长青, 等. 飞机壁板真空吸盘式柔性装配工装系统设计[J]. 沈阳航空航天大学学报, 2014, 31(6):36-41. QU L G, CHEN G T, SU C Q, et al. Design in flexible assembly tooling system of vacuum chunk for aircraft panel[J]. Journal of Shenyang Aerospace University, 2014, 31(6):36-41(in Chinese).
[78] 朱明华. 飞机部件多点柔性支撑系统研究与开发[D].南京:南京航空航天大学, 2011. ZHU M H. Research and development on multi-pointflexible supporting tooling system for aircraft components[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011(in Chinese).
[79] 陈正涛. 贮箱封闭环缝焊接内撑折展夹具的设计与分析[D]. 上海:上海交通大学, 2017. CHEN Z T. Design and analysis of a deployable inner support fixture for fuel tank's final welding process[D].Shanghai:Shanghai Jiao Tong University, 2017(in Chinese).
[80] 葛世玉. 大型薄壁筒段立式对接技术研究及实验验证[D]. 上海:上海交通大学, 2019. GE S Y, Research on vertical assembly technology of large thin-walled cylinder[D].Shanghai:Shanghai Jiao Tong University, 2019(in Chinese).
[81] 袁红璇. 飞机结构件连接孔制造技术[J]. 航空制造技术, 2007(1):96-99. YUAN H X. Manufacturing technology of connecting hole in aircraft structures[J]. Aeronautical Manufacturing Technology, 2007(1):96-99(in Chinese).
[82] GREGORY P. Boeing confronts challenges of 777 automation push[EB/OL]. (2016-07-06)[2021-07-06].https://www.ainonline.com/aviation-news/air-transport/2016-07-05/boeing-confronts-challenges-777-automation-push.
[83] DOMINIC G. Boeing abandons its failed fuselage robots on the 777X, handing the job back to machinists[EB/OL]. (2019-11-15)[2021-09-06]. https://www.seattletimes.com/business/boeing-aerospace/boeing-abandons-its-failed-fuselage-robots-on-the-777x-handing-the-job-ba-ck-to-machinists/.
[84] 陈东东. AGV式移动机器人在飞机装配中二次制孔位置精度研究[D]. 杭州:浙江大学, 2017. CHEN D D. Research on reproducible hole position accuracy of AGV mobile robot in aircraft assembly[D].Hangzhou:Zhejiang University, 2017(in Chinese).
[85] 王鑫.无损检测系统搭载平台结构设计及关键技术研究[D]. 合肥:合肥工业大学, 2018. WANG X. Research on thestructure design and key technology of the nondestructive testing system carrying platform[D]. Hefei:Hefei University of Technology, 2018(in Chinese).
[86] 王浩吉, 杨永帅, 赵彦微. 重载AGV的应用现状及发展趋势[J]. 机器人技术与应用, 2019(5):20-24. WANG H J, YANG Y S, ZHAO Y W, Application status and development trend of heavy-duty AGV[J].Robot Technique and Application, 2019(5):20-24(in Chinese).
[87] FORI A. Aerospace AGV systems[EB/OL]. (2017-03-01)[2021-07-06]. https://www.foriauto.com/Our-Products/Automated-Material-Handling/High-Capacity-AGVs/Aerospace-Assembly.
[88] FORI A. Vertical wing assembly system[EB/OL]. (2017-03-01)[2021-07-06]. https://www.foriauto.com/Our-Products/Automated-Material-Handling/High-Capacity-AGVs/Vertical-Wing-Assembly.
[89] 陶永, 高赫, 王田苗, 等. 移动工业机器人在飞机装配生产线中的应用研究[J]. 航空制造技术, 2021, 64(5):32-41, 67. TAO Y, GAO H, WANG T M, et al. Research on the application of mobile industrial robot in aircraft assembly line[J]. Aeronautical Manufacturing Technology, 2021, 64(5):32-41, 67(in Chinese).
[90] 王国磊, 王宁涛, 陈恳. 面向整机的机器人喷涂系统回顾与展望[J]. 航空制造技术, 2016(16):76-80. WANG G L, WANG N T, CHEN K. Review and prospect of robot spraying system for the whole machine[J]. Aeronautical Manufacturing Technology, 2016(16):76-80(in Chinese).
[91] 宋袁曾, 陈洁, 毛景. 大型飞机整机涂装自动化实施探讨与展望[J]. 航空制造技术, 2016(10):52-56. SONG Y Z, CHEN J, MAO J. Discussion and prospect on the implementation of painting automation for large aircraft[J]. Aeronautical Manufacturing Technology, 2016(10):52-56(in Chinese).
[92] 陈雁, 邵君奕, 张传清, 等. 复杂管道喷涂系统研制[J]. 机械设计与制造, 2009(11):1-3. CHEN Y, SHAO J Y, ZHANG C Q, et al. Development of spraying system for complex duct[J]. Manufacturing Automation, 2009(11):1-3(in Chinese).
[93] 赵宏剑, 王刚, 张波, 等. 飞机尾翼自动喷涂系统[J]. 制造业自动化, 2013, 35(2):153-156. ZHAO H J, WANG G, ZHANG B, et al. The wings of the aircraft automatic spraying system[J]. Manufacturing Automation, 2013, 35(2):153-156(in Chinese).
文章导航

/