流体力学与飞行力学

液氧煤油补燃循环发动机汽蚀故障建模与仿真分析

  • 陈一丹 ,
  • 陈宏玉 ,
  • 任孝文
展开
  • 西安航天动力研究所, 西安 710100

收稿日期: 2021-07-16

  修回日期: 2021-08-27

  网络出版日期: 2021-12-09

基金资助

国家自然科学基金(51606138)

Modeling and simulation of cavitation fault in staged combustion cycle LOX/kerosene engine

  • CHEN Yidan ,
  • CHEN Hongyu ,
  • REN Xiaowen
Expand
  • Xi'an Aerospace Propulsion Institute, Xi'an 710100, China

Received date: 2021-07-16

  Revised date: 2021-08-27

  Online published: 2021-12-09

Supported by

National Natural Science Foundation of China(51606138)

摘要

为了搭建更加精确的离心泵汽蚀工况的性能预测模型,将汽蚀工况下的泵内流动分为入口段和出口段分别计算流量,以两段流量之差确定泵内空泡体积,进而确定汽蚀的扬程相对降低系数。通过5种型号泵的仿真结果与水试结果对比验证了该建模方法的通用性和准确性,最大计算偏差出现在第二临界点附近,约为1%;针对热试中汽蚀故障进行仿真复现,和热试结果对比验证了该故障建模方法的有效性。在此基础上开展了补燃循环液氧煤油发动机氧化剂泵汽蚀故障的注入与仿真,结果表明:预压泵入口压力降低能够导致氧化剂泵汽蚀;汽蚀工况下,氧化剂主泵扬程降低、流量减少并且转速升高;进而导致燃气发生器混合比趋向当量比、温度升高,与理论分析和试车以及发射中故障结果相吻合。最低允许预压泵入口压力为53%额定入口压力,继续降低压力会导致燃气发生器温度超过临界温度,存在产生毁灭性后果的危险。

本文引用格式

陈一丹 , 陈宏玉 , 任孝文 . 液氧煤油补燃循环发动机汽蚀故障建模与仿真分析[J]. 航空学报, 2022 , 43(12) : 126121 -126121 . DOI: 10.7527/S1000-6893.2021.26121

Abstract

In order to build a more accurate performance prediction model of centrifugal pump under cavitation condition,the flow in the pump under cavitation condition is divided into inlet region and outlet region, and the volume of cavitation in the pump is determined by the difference of two-stage flow so that the relative reduction coefficient of cavitation head is determined. The simulation results of five types of pumps are compared with the hydraulic test results to verify the universality and accuracy of the modeling method. The maximum calculation deviation occurs near the second critical point, which is about 1%. The simulation results of cavitation fault in hot test are compared with the results of hot test to verify the effectiveness of the modeling method. On this basis, the injection and simulation of the cavitation fault of the oxidant pump in the staged combustion cycle liquid oxygen kerosene engine are carried out. The results show that the reduction of the inlet pressure of the pre-pressure pump can lead to the cavitation of the oxidizer pump; under the cavitation condition, the head of the oxidant main pump decreases, the mass flow rate decreases and the revolution increases; and therefore, the mixture ratio of the gas generator tends to the equivalent ratio and the temperature increases. The results are consistent with the theoretical analysis and hot test, as well as the fault in launch. Minimum allowable boost pump inlet pressure is 53% rated inlet pressure, so reducing the pressure continually will cause the gas generator temperature exceed the critical temperature, which may lead to devastating consequences.

参考文献

[1] LUO X W, JI B, TSUJIMOTO Y. A review of cavitation in hydraulic machinery[J]. Journal of Hydrodynamics, 2016, 28(3):335-358.
[2] WASHIO S. Recent developments in cavitation mechanisms:A guide for scientists and engineers[M]. Sawston:Woodhead Publishing, 2014:24-27.
[3] KUMAR P, SAINI R P. Study of cavitation in hydro turbines-A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1):374-383.
[4] BRENNEN C E. Cavitation and bubble dynamics[M]. Cambridge:Cambridge University Press, 2013:70-76.
[5] 潘中永, 袁寿其. 泵空化基础[M]. 镇江:江苏大学出版社, 2013:10-16. PAN Z Y, YUAN S Q. Fundamentals of cavitation in pumps[M]. Zhenjiang:Jiangsu University Press, 2013:10-16(in Chinese).
[6] 李建, 安阳, 石文靓. 助推分离对氧泵工作特性影响的模拟试验[J]. 火箭推进, 2020, 46(3):49-55. LI J, AN Y, SHI W J. Effect of booster separation on operating characteristics of oxygen pump by simulation test[J]. Journal of Rocket Propulsion, 2020, 46(3):49-55(in Chinese).
[7] 殷谦, 张金容. 液体火箭发动机故障模式及分析[J]. 推进技术, 1997, 18(1):22-25. YIN Q, ZHANG J R. Failure mode and analysis for liquid propellant rocket engines[J]. Journal of Propulsion Technology, 1997, 18(1):22-25(in Chinese).
[8] 蒲星星, 王建设, 高玉闪, 等. 液氧煤油发动机故障监控特征参数提取研究[J]. 火箭推进, 2017, 43(6):26-31. PU X X, WANG J S, GAO Y S, et al. Research on feature extraction for fault monitoring of LOX/kerosene rocket engine[J]. Journal of Rocket Propulsion, 2017, 43(6):26-31(in Chinese).
[9] RAMESH D, ALIMOHAMMADI H. Simulation of cavitation process in oxidizer pump of a liquid rocket engine:AIAA-2009-4958[R]. Reston:AIAA, 2009.
[10] BELIAEV E N, CHEVANOV V K, CHERVAKOV V V. Mathematical modeling of working processes of liquid propellant rocket engines[M]. Moscow:Moscow Aviation Institution, 1999:11-14(in Russian).
[11] 李龙贤, 丁振晓, 吴玉珍. 基于热力学效应修正的诱导轮空化模型研究[J]. 火箭推进, 2019, 45(5):52-58, 102. LI L X, DING Z X, WU Y Z. Research on cryogenicinducer cavitation model modified by thermodynamic effect[J]. Journal of Rocket Propulsion, 2019, 45(5):52-58, 102(in Chinese).
[12] XIANG L, TAN Y H, CHEN H, et al. Experimental investigation of cavitation instabilities in inducer with different tip clearances[J]. Chinese Journal of Aeronautics, 2021, 34(9):168-177.
[13] KIM D J, SUNG H J, CHOI C H, et al. Cavitation instabilities during the development testing of a liquid oxygen pump[J]. Journal of Propulsion and Power, 2017, 33(1):187-192.
[14] 陈泰然, 顾玲燕, 王国玉, 等. RP-3航空煤油不同替代模型的空化流动特性[J]. 推进技术, 2016, 37(3):563-571. CHEN T R, GU L Y, WANG G Y, et al. Cavitating flow characteristics of RP-3 aviation kerosene surrogate mixture models[J]. Journal of Propulsion Technology, 2016, 37(3):563-571(in Chinese).
[15] 姜映福, 刘中祥, 褚宝鑫. 低温流体汽蚀的数值计算及可视化实验研究[J]. 推进技术, 2017, 38(12):2771-2777. JIANG Y F, LIU Z X, CHU B X. Numerical simulation and visualized experimental study on cavitating of cryogenic fluids[J]. Journal of Propulsion Technology, 2017, 38(12):2771-2777(in Chinese).
[16] 刘国球.液体火箭发动机原理[M]. 北京:宇航出版社, 1993:136-142. LIU G Q. Principle of liquid rocket engine[M]. Beijing:Aerospace Press, 1993:136-142(in Chinese).
[17] 吴有亮, 赵海龙, 李强, 等. 基于Modelica的液氧/甲烷发动机起动过程仿真研究[J]. 航天推进与动力, 2018(2):37-42. WU Y L, ZHAO H L, LI Q, et al. Research on start-up process of lox/methane engine based on modelica[J]. Aerospace Propulsion and Power, 2018(2):37-42(in Chinese).
[18] 陈宏玉, 刘红军, 陈建华. 补燃循环发动机强迫起动过程[J]. 航空动力学报, 2015, 30(12):3010-3016. CHEN H Y, LIU H J, CHEN J H. Forced start-up procedure of a staged combustion cycle engine[J]. Journal of Aerospace Power, 2015, 30(12):3010-3016(in Chinese).
[19] JUNG T. Static characteristics of a flow regulator for a liquid rocket engine[J]. Journal of Spacecraft and Rockets, 2011, 48(3):541-544.
[20] BELYAEV E N, CHVANOV V K, CHERVAKOV V V. The outflow of a two-phase gas-liquid mixture from the mixing head of a gas generator when starting a liquid-propellant rocket engine[J]. High Temperature, 2005, 43(3):446-451.
[21] FRANCESCO D M. Modelling and simulation of liquid rocket engine ignition transients[D]. Rome:Sapienza University of Rome, 2011.
[22] RIEHLE M, DIEDRICH T, PERIGO D, et al. Propulsion system for the European lunar lander-Development status and breadboarding activities[C]//7th ESA Space Propulsion Conference, 2012.
[23] 张贵田. 高压补燃液氧煤油发动机[M]. 北京:国防工业出版社, 2005:251-262. ZHANG G T. High pressure staged combustion LOX/kerosene rocket engine[M]. Beijing:National Defense Industry Press, 2005:251-262(in Chinese).
文章导航

/