天问一号着陆火星专栏

火星大气高温光谱建模与非平衡辐射热流预测

  • 吕俊明 ,
  • 李飞 ,
  • 李齐 ,
  • 程晓丽
展开
  • 1. 中国航天空气动力技术研究院, 北京 100074;
    2. 中国航天科技集团有限公司 航天飞行器气动热防护实验室, 北京 100074;
    3. 中国科学院 力学研究所 高温气体动力学国家重点实验室, 北京 100190;
    4. 北京空间飞行器总体设计部, 北京 100094

收稿日期: 2021-10-25

  修回日期: 2021-11-03

  网络出版日期: 2021-12-01

基金资助

国家自然科学基金(11772315,11902025)

Modeling of Martian atmospheric high temperature spectra and prediction of non-equilibrium radiative heating

  • LYU Junming ,
  • LI Fei ,
  • LI Qi ,
  • CHENG Xiaoli
Expand
  • 1. China Academy of Aerospace Aerodynamics, Beijing 100074, China;
    2. Aerospace Vehicle Thermal Protection Laboratory, China Aerospace Science and Technology Corporation, Beijing 100074, China;
    3. State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China;
    4. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China

Received date: 2021-10-25

  Revised date: 2021-11-03

  Online published: 2021-12-01

Supported by

National Natural Science Foundation of China (11772315,11902025)

摘要

火星科学实验室成功着陆后的热环境重构数据表明,气动辐射加热在火星进入防热设计中具有不同于以往认识的重要影响,未知机制和模型不确定性等问题有待进一步研究。探测器高速进入火星大气产生极高温非平衡气动环境,造成火星气动辐射与常规CO2红外辐射研究显著不同。针对火星大气高温光谱和辐射热流预测,首先,建立适用于火星大气的高温非平衡光谱辐射模型,获得典型高温条件CO2光谱结构和辐射强度,与NASA和JAXA试验结果对比,结果显示符合较好。其次,依靠激波管和发射光谱测量技术,开展典型进入条件的辐射强度测量试验,数值结果、试验值和NASA试验结果相互符合较好,验证了光谱模型。最后,对探路者号进行气动辐射加热分析,完成典型进入条件下的非平衡流动和辐射特性计算,基于光线法得到光谱辐射强度沿驻点线的变化,表明高速与低速条件的气动辐射机制存在显著差异;基于有限体积法获得进入器表面辐射热流分布,结果显示辐射热流的分布及变化规律与地球再入显著不同,进入速度6 km/s以下时辐射热流随进入速度增加而减小,同时进入器锥身及肩部的辐射热流高于驻点区域。

本文引用格式

吕俊明 , 李飞 , 李齐 , 程晓丽 . 火星大气高温光谱建模与非平衡辐射热流预测[J]. 航空学报, 2022 , 43(3) : 626551 -626551 . DOI: 10.7527/S1000-6893.2021.26551

Abstract

The aerothermodynamics data reconstructed after the successful landing of Mars Science Laboratory shows that radiative heating has an important impact on the design of thermal protection system of Mars entry vehicles, which is different from previous understanding.However, there are still unknown mechanism and model uncertainty need to be studied.Due to the high-temperature and non-equilibrium in the high-speed entry, the aerothermal environment is different from that of conventional CO2 infrared radiation study.Firstly, a high-temperature non-equilibrium spectral radiation model applicable for Martian atmosphere has been established to obtain the spectral structure and radiation intensity, which in turn, were compared with test results from NASA and JAXA, and agreed well. Secondly, the radiation intensity under typical Mars entry velocity has been obtained by both computational method and experiment using shock tube and emission measurement techniques; the results of computation and test are in good agreement with NASA test results, validating the flow and spectrum models. Finally, numerical simulations and analysis of aero-radiation on Pathfinder have been conducted, non-equilibrium flow filed and radiation characteristics under typical conditions were completed, the spectral radiance along stagnation line based on ray tracing method was obtained, indicating that there is a significant difference between the aerodynamic radiation mechanism under high-speed and low-speed conditions; the radiative heating rate distribution on the surface was obtained based on finite volume method, and the results show the distribution and change of the radiative heating is significantly different from the reentry of the earth.The radiative heating rate decreases with the increase of the entry speed when the entry speed is below 6 km/s, and the radiative heating rate on the cone and shoulders is higher than the stagnation region.

参考文献

[1] WRIGHT M J, HWANG H H, SCHWENKE D W. Rec-ommended collision integrals for transport property com-putations part II:Mars and Venus entries[J]. AIAA Journal, 2007, 45(1):281-288.
[2] JOHNSTON C, BRANDIS A, SUTTON K. Shock layer radiation modeling and uncertainty for Mars entry:AIAA-2012-2866[R]. Reston:AIAA, 2012.
[3] EDQUIST K T, HOLLIS B R, JOHNSTON C O, et al. Mars science laboratory heat shield aerothermodynamics:Design and reconstruction[J]. Journal of Spacecraft and Rockets, 2014, 51(4):1106-1124.
[4] 吕俊明, 黄飞, 苗文博, 等. 火星进入气体辐射加热研究进展[J]. 宇航学报, 2019, 40(5):489-500. LV J M, HUANG F, MIAO W B, et al. Review of gas radiative heating for Mars entry[J]. Journal of Astronautics, 2019, 40(5):489-500(in Chinese).
[5] HOLLIS B R, PRABHU D K. Assessment of laminar, convective aeroheating prediction uncertainties for Mars-entry vehicles[J]. Journal of Spacecraft and Rockets, 2013, 50(1):56-68.
[6] PARK C, HOWE J T, JAFFE R L, et al. Review of chemical-kinetic problems of future NASA missions. II-Mars entries[J]. Journal of Thermophysics and Heat transfer, 1994, 8(1):9-23.
[7] JOHNSTON C O, BRANDIS A M. Modeling of nonequi-librium CO Fourth-Positive and CN Violet emission in CO2-N2 gases[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 149:303-317.
[8] 董士奎, 余其铮, 刘林华,等. 一种新的CO2高温辐射特性窄谱带模型参数计算方法[J]. 工程热物理学报, 2001, 22(S1):177-180. DONG S K, YU Q ZH, LIU L H, et al. A new method of calculating high temperature radiative property parameters of narrow-band model for CO2[J]. Journal of Engineering Thermophysics, 2001, 22(S1):177-180(in Chinese).
[9] CRUDEN B A, BRANDIS A M. Updates to the NEQAIR radiation solver[R]. Washington, D.C.:NASA, 2014.
[10] PALMER G, CRUDEN B. Experimental validation of CO2 radiation simulations:AIAA-2012-3188[R]. Reston:AIAA, 2012.
[11] TASHKUN S A, PEREVALOV V I. CDSD-4000:High-resolution, high-temperature carbon dioxide spectroscopic databank[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(9):1403-1410.
[12] LEMAL A, TAKAYANAGI H, NOMURA S, et al. Simulations of Carbon-Dioxide equilibrium infrared radiation measurements[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(1):184-195.
[13] ROTHMAN L S, GORDON I E, BARBER R J, et al. HITEMP, the high-temperature molecular spectroscopic database[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111(15):2139-2150.
[14] 张军, 王国林, 马昊军, 等. 高温二氧化碳气体红外辐射实验研究[J]. 光谱学与光谱分析, 2014, 34(12):3169-3173. ZHANG J, WANG G L, MA H J, et al. Infrared radiation experimental measurement and analysis of Carbon Dioxide at high temperature[J]. Spectroscopy and Spectral Analysis, 2014, 34(12):3169-3173(in Chinese).
[15] 韩子健, 彭俊, 胡宗民, 等. JF-12激波风洞在火星进入环境下的运行特性[J]. 航空学报, 2021, 42(3):124129. HAN Z J, PENG J, HU Z M, et al. Operating character-istics of JF-12 shock tunnel in Mars entry tests[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):124129(in Chinese).
[16] CRUDEN B. Radiance measurement for low density Mars entry:AIAA-2012-2742[R]. Reston:AIAA, 2012.
[17] CRUDEN B A, PRABHU D, MARTINEZ R. Absolute radiation measurement in Venus and Mars entry condi-tions[J]. Journal of Spacecraft and Rockets, 2012, 49(6):1069-1079.
[18] TAKAYANAGI H, FUJITA K, NISHIKINO Y. Shock radiation measurements from carbon dioxide flow from VUV to IR region:AIAA-2011-3631[R]. Reston:AIAA, 2011.
[19] TAKAYANAGI H, FUJITA K. Infrared radiation meas-urement behind shock wave in Mars simulant gas for aerocapture missions:AIAA-2013-2504[R]. Reston:AIAA, 2013.
[20] CANDLER G V. Rate effects in hypersonic flows[J]. Annual Review of Fluid Mechanics, 2019, 51:379-402.
[21] GUPTA R N, YOS J M, THOMPSON R A, et al. A re-view of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K:NASA RP-1232[R]. Washington, D.C.:NASA, 1990.
[22] WRIGHT M J, BOSE D, PALMER G E, et al. Recom-mended collision integrals for transport property computa-tions part Ⅰ:Air species[J]. AIAA Journal, 2005, 43(12):2558-2564.
[23] GNOFFO P A, GUPTA R N, SHINN J L. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium:NASA TP-2867[R]. Washington, D.C.:NASA, 1989.
[24] CAMAC M. CO2 relaxation processes in shock waves[M]//Fundamental Phenomena in Hypersonic Flow. Ithaca:Cornell University Press, 1966:195-215.
[25] KUSTOVA E, MEKHONOSHINA M, KOSAREVA A. Relaxation processes in carbon dioxide[J]. Physics of Fluids, 2019, 31(4):046104.
[26] PARK C. Nonequilibrium air radiation (NEQAIR) pro-gram:User's manual:NASA TM 86707[R]. Washing-ton, D.C.:NASA, 1985.
[27] 刘林华, 余其铮, 阮立明, 等. 求解辐射传递方程的离散坐标法[J]. 计算物理, 1998, 15(3):83-89. LIU L H, YU Q Z, RUAN L M, et al. Discrete ordinate solutions of radiative transfer equation[J]. Chinese Journal of Computation Physics, 1998, 15(3):83-89(in Chinese).
[28] NIU Q L, YUAN Z C, CHEN B, et al. Infrared radiation characteristics of a hypersonic vehicle under time-varying angles of attack[J]. Chinese Journal of Aeronautics, 2019, 32(4):861-874.
[29] 郝景科, 艾邦成, 吕俊明,等. 高超声速再入飞船气体热辐射计算边界虚网格方法[J]. 航空动力学报, 2017, 32(8):1827-1834. HAO J K, AI B C, LÜ J M. Boundary ghost cell method for gas heat radiation calculation of hypersonic re-entry spacecraft[J]. Journal of Aerospace Power, 2017, 32(8):1827-1834(in Chinese).
[30] CRUDEN B A, BRANDIS A M, PRABHU D K. Meas-urement and characterization of mid-wave infrared radia-tion in CO2 shocks:AIAA-2014-2962[R]. Reston:AIAA, 2014.
[31] TAKAYANAGI H, LEMAL A, NOMURA S, et al. Measurements of Carbon Dioxide nonequilibrium infrared radiation in shocked and expanded flows[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(2):483-494.
[32] LYU J M, CHENG X L, YU J J, et al. Spectral radiant intensity calculation of air in shock tube[C]//31st Interna-tional Symposium on Shock Waves, 2017:1225-1234.
[33] 吕俊明, 李飞, 林鑫, 等. 氮气辐射强度的激波管测量与验证[J]. 实验流体力学, 2019, 33(3):25-30, 111. LYU J M, LI F, LIN X, et al. Measurement and validation of nitrogen radiative intensity in shock tube[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3):25-30, 111(in Chinese).
文章导航

/