固体力学与飞行器总体设计

基于ABMS的对地攻击型无人机体系贡献率评估

  • 刘文金 ,
  • 裴扬 ,
  • 葛玉雪 ,
  • 艾俊强
展开
  • 1. 西北工业大学 航空学院,西安 710072;
    2. 飞行器体系贡献度与综合设计工业和信息化部重点实验室,西安 710072;
    3. 中国航空工业集团公司 第一飞机设计研究院,西安 710089

收稿日期: 2021-06-17

  修回日期: 2021-07-06

  网络出版日期: 2021-12-01

基金资助

航空科学基金(20185153032)

System-of-systems contribution evaluation of ground-attack UCAV based on ABMS

  • LIU Wenjin ,
  • PEI Yang ,
  • GE Yuxue ,
  • AI Junqiang
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China;
    2. Key Laboratory of Aircraft System of Systems Contribution and Synthetic Design, Ministry of Industry and Information Technology, Xi’an 710072, China;
    3. The First Aircraft Institute, Aviation Industry Corporation of China, Xi’an 710089, China

Received date: 2021-06-17

  Revised date: 2021-07-06

  Online published: 2021-12-01

Supported by

Aeronautical Science Foundation of China (20185153032)

摘要

针对传统作战效能评估方法主观性较强且对体系作战需求的满足度较差的问题,提出基于Agent建模与仿真(ABMS)的体系贡献率评估方法并应用于对地攻击型无人机的评估。首先,建立基于ABMS的体系贡献率评估框架;其次,建立包含行为层、功能层和参数层的分层模块化Agent模型;然后,从作战效果、效率和代价3个方面提出体系的效能评估指标;最后,以对地攻击型无人机与防空系统的攻防对抗为实例进行仿真,分析具有不同隐身能力和巡航速度的机型以及同类机型不同数量对体系贡献率的影响。分析结果表明,高隐身和高速机型的体系贡献率通常较高,但隐身能力和巡航速度对体系贡献率的影响模式存在差异性;无人机数量增加会提高体系贡献率,但存在饱和值。

本文引用格式

刘文金 , 裴扬 , 葛玉雪 , 艾俊强 . 基于ABMS的对地攻击型无人机体系贡献率评估[J]. 航空学报, 2022 , 43(9) : 225972 -225972 . DOI: 10.7527/S1000-6893.2021.25972

Abstract

To solve the highly subjective and poorly satisfaction of system-of-systems operational requirements problems in the traditional combat effectiveness evaluation methods, an evaluation method of system-of-systems contribution rate based on Agent-Based Modeling and Simulation (ABMS) is proposed and applies for the evaluation of ground-attack UCAV. Firstly, the evaluation framework of the method is established. Then, a hierarchical modular agent model including behavior layer, function layer, and parameter layer is constructed. Subsequently, the effectiveness evaluation index is proposed in three aspects: combat effect, efficiency, and cost. Finally, taking a confrontation scenario composed of ground-attack UCAV and air defense system as an example, the contribution rate of UCAV with different stealth capabilities and cruising speeds, and the number of UCAV to system-of-systems is evaluated. Results show that the contribution rates of high stealth aircraft and high-speed aircraft are generally high, but the influence modes of stealth capability and cruise speed on contribution rate are different. Results also show the increase of UCAV number will increase the contribution rates, but there is a saturation value.

参考文献

[1] WANG C, DONG Y F, XU G H, et al. Combat effectiveness assessment of ground-attack UCAV based on maximizing deviation[J]. Fire Control & Command Control, 2016, 41(11): 62-65 (in Chinese). 王超, 董彦非, 徐冠华, 等. 基于离差最大化的对地攻击型无人机作战效能评估[J]. 火力与指挥控制, 2016, 41(11): 62-65.
[2] GAO F, ZHANG A, BI W H. Weapon system operational effectiveness evaluation based on the belief rule-based system with interval data[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(5): 6687-6701.
[3] LI Q, YAN J, ZHU J Q, et al. State of art and development trends of top-level demonstration technology for aviation weapon equipment[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 1-16 (in Chinese). 李清, 闫娟, 朱家强, 等. 航空武器装备顶层论证技术发展现状与趋势[J]. 航空学报, 2016, 37(1): 1-16.
[4] LUO C K, CHEN Y X, XIANG H C, et al. Review of the evaluation methods of equipment's contribution rate to system-of-systems[J]. Systems Engineering and Electronics, 2019, 41(8): 1789-1794 (in Chinese). 罗承昆, 陈云翔, 项华春, 等. 装备体系贡献率评估方法研究综述[J]. 系统工程与电子技术, 2019, 41(8): 1789-1794.
[5] YANG K W, YANG Z W, TAN Y J, et al. Review of the evaluation methods of equipment system of systems facing the contribution rate[J]. Systems Engineering and Electronics, 2019, 41(2): 311-321 (in Chinese). 杨克巍, 杨志伟, 谭跃进, 等. 面向体系贡献率的装备体系评估方法研究综述[J]. 系统工程与电子技术, 2019, 41(2): 311-321.
[6] BRAAFLADT A, STEFFENS M J, MAVRIS D N. Tradespace exploration and analysis using mission effectiveness in aircraft conceptual design[C]//AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 1127.
[7] ZHANG R W, SONG B F, PEI Y, et al. Agent-based analysis of multi-UAV area monitoring mission effectiveness[C]//AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2017: 3151.
[8] TRAN H T, DOMERÇANT J C, MAVRIS D N. Evaluating the agility of adaptive command and control networks from a cyber complex adaptive systems perspective[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2015, 12(4): 405-422.
[9] YUN Q J, SONG B F, PEI Y, et al. Analysis of the factors influencing the combat effectiveness of airborne laser weapon system based on Agent modeling[J]. Systems Engineering and Electronics, 2020, 42(4): 826-835 (in Chinese). 郧奇佳, 宋笔锋, 裴扬, 等. 基于Agent建模的机载激光武器系统作战效能影响因素分析[J]. 系统工程与电子技术, 2020, 42(4): 826-835.
[10] TRAN H T, DOMERÇANT J C, MAVRIS D N. Evaluating the agility of adaptive command and control networks from a cyber complex adaptive systems perspective[J]. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology, 2015, 12(4): 405-422.
[11] SCHUMANN B, FERRARO M, SURENDRA A, et al. Better design decisions through operational modeling during the early design phases[J]. Journal of Aerospace Information Systems, 2014, 11(4): 195-210.
[12] GAO Y, LIU H, ZHOU Y M. An evaluation method of combat aircraft contribution effectiveness based on mission success space design[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(1): 273-286.
[13] BAI J P, LI T. Evaluation of penetration mission effectiveness oriented to fighter performance parameter analysis[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 122-132 (in Chinese). 白金鹏, 李天. 面向指标论证的战斗机突防效能评估[J]. 航空学报, 2016, 37(1): 122-132.
[14] FANG Z P, CHEN W C, ZHANG S G. Aircraft flight dynamics[M]. Beijing: Beihang University Press, 2005:28-31 (in Chinese). 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005:28-31.
[15] GUNDLACH J. Designing unmanned aircraft systems[M]. Reston: AIAA, 2012.
[16] JOHNSON J. Analysis of image forming systems[C]//Proceedings of SPIE, Vol.513, Part One and Part Two. Bellingham: U.S.Army Research and Development Laboratories, 1985: 761.
[17] YOU R R, WANG X W, REN P D, et al. Target observation performance evaluation method for video surveillance based on Johnson criteria[J]. Infrared and Laser Engineering, 2016, 45(12): 1217003 (in Chinese). 游瑞蓉, 王新伟, 任鹏道, 等. 约翰逊准则的视频监控目标检测性能评估方法[J]. 红外与激光工程, 2016, 45(12): 1217003.
[18] FU X J, LI P. The analysis on hit probability of semi-active laser guided air-to-ground missile weapon system[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(4): 49-52 (in Chinese). 符新军, 李鹏. 激光半主动制导空地导弹武器系统命中概率分析[J]. 弹箭与制导学报, 2011, 31(4): 49-52.
[19] PEI Y, SONG B F, SHI S. Analysis method of aircraft combat survivability: Progress and challenge[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 216-234 (in Chinese). 裴扬, 宋笔锋, 石帅. 飞机作战生存力分析方法研究进展与挑战[J]. 航空学报, 2016, 37(1): 216-234.
[20] RICHARDS M. Fundamentals of radar signal processing[M]. New York: McGraw Hill, 2005: 353-355.
[21] YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377 (in Chinese). 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377.
[22] TIAN Y L, WANG Y Q, XIONG P S, et al. Structured simulation platform architecture for fighter cloud operations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1938-1945 (in Chinese). 田永亮, 王永庆, 熊培森, 等. 面向战斗机云作战的构造型仿真平台架构[J]. 北京航空航天大学学报, 2019, 45(10): 1938-1945.
[23] LUO C K, CHEN Y X, HU X, et al. Evaluation method of equipment’s contribution rate to system-of-systems based on operation loop and self-information quantity[J]. Journal of Shanghai Jiao Tong University, 2019, 53(6): 741-748 (in Chinese). 罗承昆, 陈云翔, 胡旭, 等. 基于作战环和自信息量的装备体系贡献率评估方法[J]. 上海交通大学学报, 2019, 53(6): 741-748.
[24] ZHAO D L, TAN Y J, LI J C, et al. Armament system of systems contribution evaluation based on operation loop[J]. Systems Engineering and Electronics, 2017, 39(10): 2239-2247 (in Chinese). 赵丹玲, 谭跃进, 李际超, 等. 基于作战环的武器装备体系贡献度评估[J]. 系统工程与电子技术, 2017, 39(10): 2239-2247.
文章导航

/