基于测地线距离的空间非合作目标点云配准
收稿日期: 2021-09-07
修回日期: 2021-10-25
录用日期: 2021-11-12
网络出版日期: 2021-11-23
基金资助
国家自然科学基金(62073033)
Point cloud registration of space non-cooperative targets based on geodesic distance
Received date: 2021-09-07
Revised date: 2021-10-25
Accepted date: 2021-11-12
Online published: 2021-11-23
Supported by
National Natural Science Foundation of China(62073033)
针对局部结构相似及翻滚遮挡下目标动态特性辨识问题,提出一种融合疏密度指标与全局测地线距离的空间非合作目标点云配准方法。首先,引入球面投影法,将不规则的空间目标点云映射到规则的球面流形上。然后,设计基于点云离散程度的疏密度评价指标,将球面点云划分为不同的局部点云子集,在此基础上构建全局测地线距离矩阵以增强点云局部形状信息的感知能力。最后,依据全局测地线距离矩阵推导建立了场景点云与模型点云间配准矩阵,实现空间非合作目标的动态特性辨识。仿真与试验结果表明:提出的算法在目标局部结构相似及点云缺失下的配准精度优于最近迭代点(ICP)算法与基于凸包粗配准的改进ICP算法。
陈斌 , 郗厚印 , 张晓东 , 罗敏 , 郭治栋 . 基于测地线距离的空间非合作目标点云配准[J]. 航空学报, 2023 , 44(1) : 326336 -326336 . DOI: 10.7527/S1000-6893.2021.26336
To realize identification of the dynamic characteristics of the space targets with local structural similarity and tumbling occlusion, a novel point cloud registration method is proposed for the space non-cooperative target by using the density index and global geodesic distance. First, the spherical projection method is introduced to map the irregular point cloud of the space target to the regular spherical manifold. Then, a density evaluation index based on the dispersion degree of point cloud is designed to divide the spherical point cloud into local subsets. On this basis, a global geodesic distance matrix is constructed to enhance the perception of the information of the local shape of the point cloud. Finally, according to the global geodesic distance matrix, a registration matrix between the scene point cloud and the model point cloud is established to realize the dynamic characteristic identification of the space non-cooperative target. Simulation and experimental results show that with similar target local structures and missing point clouds, the proposed algorithm has better registration accuracy compared to Iterative Closet Point(ICP) algorithms and improved ICP algorithms based on convex hull coarse registration.
1 | CHENG L, CHEN S, LIU X Q, et al. Registration of laser scanning point clouds: A review[J]. Sensors, 2018, 18(5): 1641. |
2 | LI Y P, WANG Y P, XIE Y C. Using consecutive point clouds for pose and motion estimation of tumbling non-cooperative target[J]. Advances in Space Research, 2019, 63(5): 1576-1587. |
3 | 陈路, 黄攀峰, 蔡佳. 基于改进HOG特征的空间非合作目标检测[J]. 航空学报, 2016, 37(2): 717-726. |
CHEN L, HUANG P F, CAI J. Space non-cooperative target detection based on improved features of histogram of oriented gradient[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 717-726 (in Chinese). | |
4 | 温卓漫, 王延杰, 邸男, 等. 空间站机械臂位姿测量中合作靶标的快速识别[J]. 航空学报, 2015, 36(4): 1330-1338. |
WEN Z M, WANG Y J, DI N, et al. Fast recognition of cooperative target used for position and orientation measurement of space station’s robot arm[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1330-1338 (in Chinese). | |
5 | MARANI R, RENO, VITO, et al. A modified iterative closest point algorithm for 3D point cloud registration[J]. Computer-Aided Civil and Infrastructure Engineering, 2016, 31(7): 515-534. |
6 | BESL P J, MCKAY N D. Method for registration of 3-d shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (2): 239-256. |
7 | CHEN Y, MEDIONI G. Object modelling by registration of multiple range images[J]. Image and Vision Computing, 1992, 10(3): 145-155. |
8 | ZHANG H B, XIE F. A Method for registering range images based on matching triangle meshes[C]∥International Conference on Signal Processing. Piscataway: IEEE Press, 2005. |
9 | SUOMINEN O, GOTCHEV A. Circular trajectory correspondences for iterative closest point registration[C]∥2013 3DTV Vision Beyond Depth (3DTV-CON). Piscataway: IEEE Press, 2013. |
10 | SHARP G C, LEE S W, WEHE D K. ICP registration using invariant features[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 90-102. |
11 | AHMED M T, MOHAMAD M, MARSHALL J A, et al. Registration of noisy point clouds using virtual interest points[C]∥2015 12th Conference on Computer and Robot Vision. Piscataway: IEEE Press, 2015. |
12 | 郑晓璐, 潘广贞, 杨剑, 等. 基于Hausdorff距离改进的ICP算法[J]. 计算机工程与设计, 2015, 36(9): 2481-2484, 2489. |
ZHENG X L, PAN G Z, YANG J, et al. Improved ICP algorithm based on Hausdorff distance[J]. Computer Engineering and Design, 2015, 36(9): 2481-2484, 2489 (in Chinese). | |
13 | 石磊, 严利民. 基于法向量和高斯曲率的点云配准算法[J]. 微电子学与计算机, 2020, 37(9): 68-72. |
SHI L, YAN L M. Point cloud registration algorithm based on normal vector and Gaussian curvature[J]. Microelectronics & Computer, 2020, 37(9): 68-72 (in Chinese). | |
14 | DAROM T, KELLER Y. Scale-invariant features for 3-D mesh models[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2012, 21(5): 2758-2769. |
15 | 申浩, 李书晓, 申意萍, 等. 航拍视频帧间快速配准算法[J]. 航空学报, 2013, 34(6): 1405-1413. |
SHEN H, LI S X, SHEN Y P, et al. Fast interframe registration method in aerial videos[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1405-1413 (in Chinese). | |
16 | ZHAO G P, XU S X, BO Y M. LiDAR-based non-cooperative tumbling spacecraft pose tracking by fusing depth maps and point clouds[J]. Sensors (Basel, Switzerland), 2018, 18(10): 3432. |
17 | HATTAB A, TAUBIN G. 3D rigid registration of cad point-clouds[C]∥2018 International Conference on Computing Sciences and Engineering (ICCSE). Piscataway: IEEE Press, 2018. |
18 | KLEPPE A L, TINGELSTAD L, EGELAND O. Coarse alignment for model fitting of point clouds using a curvature-based descriptor[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(2): 811-824. |
19 | ATTIA M, SLAMA Y, PEYRODIE L, et al. 3D point cloud coarse registration based on convex hull refined by ICP and NDT[C]∥25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP). Piscataway: IEEE Press, 2018 |
20 | WU B C, WAN A, YUE X Y, et al. SqueezeSeg: Convolutional neural nets with recurrent CRF for real-time road-object segmentation from 3D LiDAR point cloud[C]∥2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press,2018. |
21 | YARU X, JUN X, YING W. A fast registration algorithm of rock point cloud based on spherical projection and feature extraction[J]. Frontiers of Computer Science, 2019(1): 170-182. |
22 | 张帆, 高云龙, 黄先锋, 等. 基于球面投影的单站地面激光点云直线段提取方法[J]. 测绘学报, 2015, 44(6): 655-662. |
ZHANG F, GAO Y L, HUANG X F, et al. Spherical projection based straight line segment extraction for single station terrestrial laser point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 655-662 (in Chinese). | |
23 | RAO Y M, LU J W, ZHOU J. Spherical fractal convolutional neural networks for point cloud recognition[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019. |
24 | KAIRANBAY M, JANI H MAT. A review and evaluations of shortest path algorithms[J]. International Journal of Scientific & Technology Research, 2013, 2(6): 99-104. |
25 | LaValle S M, Leidner D. Geometric representations and transformations. in planning algorithms[M]. Cambridge: Cambridge University Press, 2006: 81-126. |
/
〈 |
|
〉 |