流体力学与飞行力学

织物透气性对火星用降落伞气动特性影响机理

  • 徐欣 ,
  • 贾贺 ,
  • 陈雅倩 ,
  • 荣伟 ,
  • 蒋伟 ,
  • 薛晓鹏
展开
  • 1. 中南大学 航空航天学院, 长沙 410083;
    2. 南京航空航天大学 航空学院, 南京 210016;
    3. 北京空间机电研究所, 北京 100094;
    4. 浙江大学 航空航天学院, 杭州 310058

收稿日期: 2021-08-27

  修回日期: 2021-09-22

  网络出版日期: 2021-11-23

基金资助

国家自然科学基金(12072377,11702332,11972192);湖南省自然科学基金(2022JJ30678);航天进入减速与着陆技术实验室开放基金(EDL19092126);湖南省研究生科研创新项目(CX20200258);中南大学研究生自主探索创新项目(2020zzts758)

Influence mechanism of fabric permeability of canopy on aerodynamic performance of Mars parachute

  • XU Xin ,
  • JIA He ,
  • CHEN Yaqian ,
  • RONG Wei ,
  • JIANG Wei ,
  • XUE Xiaopeng
Expand
  • 1. School of Aeronautics and Astronautics, Central South University, Changsha 410083, China;
    2. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    3. Beijing Institute of Space Mechanics and Electricity, Beijing 100094, China;
    4. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310058, China

Received date: 2021-08-27

  Revised date: 2021-09-22

  Online published: 2021-11-23

Supported by

National Natural Science Foundation of China (12072377, 11702332, 11972192); Natural Science Foundation of Hunan Province (2022 JJ30678); Foundation of Laboratory of Aerospace Entry, Descent and Landing Technology (EDL19092126); Graduate Research Innovation Project of Hunan Province (CX20200258); Graduate Independent Exploration and Innovation Project of Central South University (2020zzts758)

摘要

探测器的进入、减速、着陆过程是火星探测任务中的关键一环,火星降落伞在其中起着至关重要的减速作用。然而,作为火星任务中唯一成功使用至今的伞型,盘-缝-带伞型已经达到了其尺寸极限,而新一代的超声速盘帆伞和环帆伞亦在飞行试验中全部失败,这可能与其复杂的透气特性(几何透气性和织物透气性)相关。但目前针对织物透气性的研究主要集中在亚声速范围,超声速条件下织物透气性的影响机理尚不明了且报道极少。以火星科学实验室降落伞为基础模型,从伞衣厚度和相对透气量等关键设计参数角度,对其开展织物透气性影响机理的数值研究。结果表明:针对透气性伞衣,织物透气性的改变对降落伞的阻力性能影响较小,但对降落伞的稳定性影响较大;对于1 mm伞衣厚度,16%~24%的相对透气量稳定性较优;对于12%相对透气量的伞衣,0.2~0.5 mm的伞衣厚度稳定性最佳;相对亚声速来流,超声速来流下的透气性降落伞的稳定性更高。以上研究结论能够为新一代降落伞织物透气性的设计提供一定的理论参考。

本文引用格式

徐欣 , 贾贺 , 陈雅倩 , 荣伟 , 蒋伟 , 薛晓鹏 . 织物透气性对火星用降落伞气动特性影响机理[J]. 航空学报, 2022 , 43(12) : 126289 -126289 . DOI: 10.7527/S1000-6893.2021.26289

Abstract

The process of entry, descent and landing of the capsule is a key stage of the Mars exploration mission, during which the Mars parachute plays a crucial role in the capsule deceleration from supersonic to subsonic speed. However, the parachute successfully used to date in all Mars missions, i.e., the disk-gap-band parachute, has reached its size limit, whereas the new generation of the supersonic disk-sail and ring-sail parachute has failed in their flight tests, which may be related to their complicated porosities (i.e., geometric porosity and fabric permeability). The research on the fabric permeability is mostly considered for cases in the subsonic flows, and the influence mechanism of fabric permeability under supersonic conditions is not clear and rarely reported. Based on the Mars Science Laboratory parachute model, we perform numerical simulations to study the influence mechanism of fabric permeability on the aerodynamic performance of the Mars parachute from the key parameters, i.e., the thickness of the canopy and a specific porosity (computed from its fabric permeability at a standard pressure differential). Results show that the change of the specific porosity (fabric permeability) has a minor effect on the drag performance of the parachute, while exerting a major effect on the parachute stability. When the thickness is 1 mm, the canopy with a specific porosity of 16%-24% exhibits better stability, and the best stability is achieved when the canopy has a specific porosity of 12% with a thickness of 0.2-0.5 mm. Furthermore, the porous parachute placed in the supersonic flows is more stable than that in the subsonic flows. These results can provide theoretical reference for the design of the fabric permeability of new generation parachutes.

参考文献

[1] XUE X P,WEN C Y.Review of unsteady aerodynamics of supersonic parachutes[J].Progress in Aerospace Sciences,2021,125:100728.
[2] CRUZ J R, WAY D, SHIDNER J, et al. Reconstruction of the Mars science laboratory parachute performance and comparison to the descent simulation[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA, 2013.
[3] SENGUPTA A, WITKOWSKI A, ROWAN J, et al. Overview of the Mars science laboratory parachute de-celerator system[C]//19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston:AIAA, 2007.
[4] CLARK I G, RIVELLINI T, ADLER M. Development and testing of a new family of low-density supersonic decelerators[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA, 2013.
[5] GALLON J, WITKOWSKI A, CLARK I G, et al. Low density supersonic decelerator parachute decelerator system[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA, 2013.
[6] CLARK I G, GALLON J C, WITKOWSKI A. Para-chute decelerator system performance during the low density supersonic decelerator program's first supersonic flight dynamics test[C]//23rd AIAA Aerodynamic Decel-erator Systems Technology Conference. Reston:AIAA, 2015.
[7] GOGLIA M J, LAVIER H W S, BROWN C D. Air permeability of parachute gloths[J]. Textile Research Journal, 1955, 25(4):296-313.
[8] LINGARD J, UNDERWOOD J. The effects of low density atmospheres on the aerodynamic coefficients of parachutes[C]//13th Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 1995.
[9] RONDEAU N C, DESABRAIS K J, CHARETTE C, et al. Investigation of parachute fabric permeability under cyclic loading[C]//23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2015:522-542.
[10] HEINRICH H, HAAK E. Stability and drag of para-chutes with varying effective porosity:TR AFFDL-TR-71-58[R]. Dayton:Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, 1971.
[11] ZUMWALT C, CRUZ J, O'FARRELL C, et al. Wind tunnel test of subscale ringsail and disk-gap-band para-chutes[C]//34th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2016.
[12] CRUZ J R, WAY D, SHIDNER J, et al. Parachute models used in the Mars science laboratory entry, descent, and landing simulation[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA, 2013.
[13] CRUZ J R, SNYDER M L. Estimates for the aerodynamic coefficients of ringsail and disk-gap-band parachutes operating on Mars[C]//24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2017.
[14] CRUZ J R, O'FARRELL C, HENNINGS E, et al. Permeability of two parachute fabrics-measurements, modeling, and application[C]//24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA,2017.
[15] TAGUCHI M, SEMBA N, MORI K. Effects of flexibility and gas permeability of fabric to supersonic performance of flexible parachute[C]//23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2015.
[16] 贾贺, 荣伟, 陈国良. 基于LS-DYNA的降落伞伞衣织物透气性参数仿真验证[J]. 航天返回与遥感, 2009, 30(1):15-20. JIA H, RONG W, CHEN G L. The use of LS-DYNA to simulate the permeability parameters of the parachute canopy[J]. Spacecraft Recovery & Remote Sensing, 2009, 30(1):15-20(in Chinese).
[17] 宁雷鸣, 张红英, 童明波. 一种伞衣织物透气性快速预测算法[J]. 航天返回与遥感, 2016, 37(5):10-18. NING L M, ZHANG H Y, TONG M B. A fast permeability estimation method for parachute fabric[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(5):10-18(in Chinese).
[18] YANG X, YU L, NIE S C, et al. Aerodynamic performance of the supersonic parachute with material permeability[J]. Journal of Industrial Textiles, 2021, 50(6):812-829.
[19] 姜璐璐, 林明月, 薛晓鹏, 等. 不同大气条件下超声速降落伞系统气动特性分析[J]. 航天返回与遥感, 2020, 41(6):77-89. JIANG L L, LIN M Y, XUE X P, et al. Numerical study on aerodynamic characteristic of supersonic parachute system under different atmospheric conditions[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(6):77-89(in Chinese).
[20] XUE X P, JIA H, RONG W, et al. Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems[J]. Chinese Journal of Aeronautics, 2022, 35(4):45-54.
[21] MUPPIDI S, O'FARRELL C, TANNER C, et al. Modeling and flight performance of supersonic disk-gap-band parachutes In slender body wakes[C]//2018 Atmospheric Flight Mechanics Conference. Reston:AIAA, 2018.
[22] RONDEAU N, FITEK J, DESABRAIS K J, et al. Investigations of parachute fabric permeability under an unsteady pressure differential[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA,2013.
[23] ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 2(48):89-94.
[24] 余莉, 明晓, 陈丽君. 不同透气情况降落伞的流场试验研究[J]. 空气动力学学报, 2008, 26(1):19-25. YU L, MING X, CHEN L J. Experimental investigation on the flow-field of different vent canopy[J]. Acta Aerodynamica Sinica, 2008, 26(1):19-25(in Chinese).
[25] INNOCENTINI M D M, SALVINI V R, PANDOLFELLI V C, et al. Permeability of ceramic foams[J]. American Ceramic Society Bulletin, 1999, 78(9):78-84.
[26] 杨雪, 余莉, 李允伟, 等. 环帆伞稳降阶段织物透气性影响数值模拟[J]. 空气动力学学报, 2015, 33(5):714-719. YANG X, YU L, LI Y W, et al. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. Acta Aerodynamica Sinica, 2015, 33(5):714-719(in Chinese).
[27] BOUSTANI J, ANUGRAH G, BARAD M F, et al. A numerical investigation of parachute deployment in supersonic flow[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020.
[28] 陈雅倩. 火星探测用透气降落伞气动干扰的数值模拟研究[D]. 长沙:中南大学, 2021:14-15. CHEN Y Q. Numerical simulation of aerodynamic interaction of porosity parachutes for Mars exploration mission[D]. Changsha:Central South University, 2021:14-15(in Chinese).
[29] XUE X P, NISHIYAMA Y, NAKAMURA Y, et al. Parametric study on aerodynamic interaction of supersonic parachute system[J]. AIAA Journal, 2015, 53(9):2796-2801.
[30] 姜璐璐. 火星用超声速盘帆伞系统透气性影响及气动特性数值研究[D]. 长沙:中南大学, 2021:11-20. JIANG L L. Numerical study of porosity and aerodynamic characteristics of mars supersonic disksail parachutes[D]. Changsha:Central South University, 2021:11-20(in Chinese).
[31] XUE X P, NISHIYAMA Y, NAKAMURA Y, et al. High-speed unsteady flows past two-body configurations[J]. Chinese Journal of Aeronautics, 2018, 31(1):54-64.
[32] CLARK I G, MANNING R, ADLER M. Summary of the first high-altitude, supersonic flight dynamics test for the low-density supersonic decelerator project[C]//23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2015.
[33] CLARK I, ADLER M. Summary of the second high-altitude, supersonic flight dynamics test for the LDSD project[C]//2016 IEEE Aerospace Conference. Piscataway:IEEE Press, 2016:1-24.
文章导航

/