The process of entry, descent and landing of the capsule is a key stage of the Mars exploration mission, during which the Mars parachute plays a crucial role in the capsule deceleration from supersonic to subsonic speed. However, the parachute successfully used to date in all Mars missions, i.e., the disk-gap-band parachute, has reached its size limit, whereas the new generation of the supersonic disk-sail and ring-sail parachute has failed in their flight tests, which may be related to their complicated porosities (i.e., geometric porosity and fabric permeability). The research on the fabric permeability is mostly considered for cases in the subsonic flows, and the influence mechanism of fabric permeability under supersonic conditions is not clear and rarely reported. Based on the Mars Science Laboratory parachute model, we perform numerical simulations to study the influence mechanism of fabric permeability on the aerodynamic performance of the Mars parachute from the key parameters, i.e., the thickness of the canopy and a specific porosity (computed from its fabric permeability at a standard pressure differential). Results show that the change of the specific porosity (fabric permeability) has a minor effect on the drag performance of the parachute, while exerting a major effect on the parachute stability. When the thickness is 1 mm, the canopy with a specific porosity of 16%-24% exhibits better stability, and the best stability is achieved when the canopy has a specific porosity of 12% with a thickness of 0.2-0.5 mm. Furthermore, the porous parachute placed in the supersonic flows is more stable than that in the subsonic flows. These results can provide theoretical reference for the design of the fabric permeability of new generation parachutes.
[1] XUE X P,WEN C Y.Review of unsteady aerodynamics of supersonic parachutes[J].Progress in Aerospace Sciences,2021,125:100728.
[2] CRUZ J R, WAY D, SHIDNER J, et al. Reconstruction of the Mars science laboratory parachute performance and comparison to the descent simulation[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA, 2013.
[3] SENGUPTA A, WITKOWSKI A, ROWAN J, et al. Overview of the Mars science laboratory parachute de-celerator system[C]//19th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston:AIAA, 2007.
[4] CLARK I G, RIVELLINI T, ADLER M. Development and testing of a new family of low-density supersonic decelerators[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA, 2013.
[5] GALLON J, WITKOWSKI A, CLARK I G, et al. Low density supersonic decelerator parachute decelerator system[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA, 2013.
[6] CLARK I G, GALLON J C, WITKOWSKI A. Para-chute decelerator system performance during the low density supersonic decelerator program's first supersonic flight dynamics test[C]//23rd AIAA Aerodynamic Decel-erator Systems Technology Conference. Reston:AIAA, 2015.
[7] GOGLIA M J, LAVIER H W S, BROWN C D. Air permeability of parachute gloths[J]. Textile Research Journal, 1955, 25(4):296-313.
[8] LINGARD J, UNDERWOOD J. The effects of low density atmospheres on the aerodynamic coefficients of parachutes[C]//13th Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 1995.
[9] RONDEAU N C, DESABRAIS K J, CHARETTE C, et al. Investigation of parachute fabric permeability under cyclic loading[C]//23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2015:522-542.
[10] HEINRICH H, HAAK E. Stability and drag of para-chutes with varying effective porosity:TR AFFDL-TR-71-58[R]. Dayton:Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, 1971.
[11] ZUMWALT C, CRUZ J, O'FARRELL C, et al. Wind tunnel test of subscale ringsail and disk-gap-band para-chutes[C]//34th AIAA Applied Aerodynamics Conference. Reston:AIAA, 2016.
[12] CRUZ J R, WAY D, SHIDNER J, et al. Parachute models used in the Mars science laboratory entry, descent, and landing simulation[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA, 2013.
[13] CRUZ J R, SNYDER M L. Estimates for the aerodynamic coefficients of ringsail and disk-gap-band parachutes operating on Mars[C]//24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2017.
[14] CRUZ J R, O'FARRELL C, HENNINGS E, et al. Permeability of two parachute fabrics-measurements, modeling, and application[C]//24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA,2017.
[15] TAGUCHI M, SEMBA N, MORI K. Effects of flexibility and gas permeability of fabric to supersonic performance of flexible parachute[C]//23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2015.
[16] 贾贺, 荣伟, 陈国良. 基于LS-DYNA的降落伞伞衣织物透气性参数仿真验证[J]. 航天返回与遥感, 2009, 30(1):15-20. JIA H, RONG W, CHEN G L. The use of LS-DYNA to simulate the permeability parameters of the parachute canopy[J]. Spacecraft Recovery & Remote Sensing, 2009, 30(1):15-20(in Chinese).
[17] 宁雷鸣, 张红英, 童明波. 一种伞衣织物透气性快速预测算法[J]. 航天返回与遥感, 2016, 37(5):10-18. NING L M, ZHANG H Y, TONG M B. A fast permeability estimation method for parachute fabric[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(5):10-18(in Chinese).
[18] YANG X, YU L, NIE S C, et al. Aerodynamic performance of the supersonic parachute with material permeability[J]. Journal of Industrial Textiles, 2021, 50(6):812-829.
[19] 姜璐璐, 林明月, 薛晓鹏, 等. 不同大气条件下超声速降落伞系统气动特性分析[J]. 航天返回与遥感, 2020, 41(6):77-89. JIANG L L, LIN M Y, XUE X P, et al. Numerical study on aerodynamic characteristic of supersonic parachute system under different atmospheric conditions[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(6):77-89(in Chinese).
[20] XUE X P, JIA H, RONG W, et al. Effect of Martian atmosphere on aerodynamic performance of supersonic parachute two-body systems[J]. Chinese Journal of Aeronautics, 2022, 35(4):45-54.
[21] MUPPIDI S, O'FARRELL C, TANNER C, et al. Modeling and flight performance of supersonic disk-gap-band parachutes In slender body wakes[C]//2018 Atmospheric Flight Mechanics Conference. Reston:AIAA, 2018.
[22] RONDEAU N, FITEK J, DESABRAIS K J, et al. Investigations of parachute fabric permeability under an unsteady pressure differential[C]//AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston:AIAA,2013.
[23] ERGUN S. Fluid flow through packed columns[J]. Chemical Engineering Progress, 1952, 2(48):89-94.
[24] 余莉, 明晓, 陈丽君. 不同透气情况降落伞的流场试验研究[J]. 空气动力学学报, 2008, 26(1):19-25. YU L, MING X, CHEN L J. Experimental investigation on the flow-field of different vent canopy[J]. Acta Aerodynamica Sinica, 2008, 26(1):19-25(in Chinese).
[25] INNOCENTINI M D M, SALVINI V R, PANDOLFELLI V C, et al. Permeability of ceramic foams[J]. American Ceramic Society Bulletin, 1999, 78(9):78-84.
[26] 杨雪, 余莉, 李允伟, 等. 环帆伞稳降阶段织物透气性影响数值模拟[J]. 空气动力学学报, 2015, 33(5):714-719. YANG X, YU L, LI Y W, et al. Numerical simulation of the effect of the permeability on the ringsail parachute in terminal descent stage[J]. Acta Aerodynamica Sinica, 2015, 33(5):714-719(in Chinese).
[27] BOUSTANI J, ANUGRAH G, BARAD M F, et al. A numerical investigation of parachute deployment in supersonic flow[C]//AIAA Scitech 2020 Forum. Reston:AIAA, 2020.
[28] 陈雅倩. 火星探测用透气降落伞气动干扰的数值模拟研究[D]. 长沙:中南大学, 2021:14-15. CHEN Y Q. Numerical simulation of aerodynamic interaction of porosity parachutes for Mars exploration mission[D]. Changsha:Central South University, 2021:14-15(in Chinese).
[29] XUE X P, NISHIYAMA Y, NAKAMURA Y, et al. Parametric study on aerodynamic interaction of supersonic parachute system[J]. AIAA Journal, 2015, 53(9):2796-2801.
[30] 姜璐璐. 火星用超声速盘帆伞系统透气性影响及气动特性数值研究[D]. 长沙:中南大学, 2021:11-20. JIANG L L. Numerical study of porosity and aerodynamic characteristics of mars supersonic disksail parachutes[D]. Changsha:Central South University, 2021:11-20(in Chinese).
[31] XUE X P, NISHIYAMA Y, NAKAMURA Y, et al. High-speed unsteady flows past two-body configurations[J]. Chinese Journal of Aeronautics, 2018, 31(1):54-64.
[32] CLARK I G, MANNING R, ADLER M. Summary of the first high-altitude, supersonic flight dynamics test for the low-density supersonic decelerator project[C]//23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston:AIAA, 2015.
[33] CLARK I, ADLER M. Summary of the second high-altitude, supersonic flight dynamics test for the LDSD project[C]//2016 IEEE Aerospace Conference. Piscataway:IEEE Press, 2016:1-24.