论文

风洞试验雷诺数/静气动弹性效应分离方法

  • 郭秋亭 ,
  • 孙岩 ,
  • 郭正 ,
  • 刘光远
展开
  • 1. 国防科技大学 空天科学学院, 长沙 410073;
    2. 中国空气动力研究与发展中心 高速空气动力研究所, 绵阳 622762;
    3. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2021-09-02

  修回日期: 2021-09-17

  网络出版日期: 2021-11-10

基金资助

国家自然科学基金(11802328);国家数值风洞工程(NNW-FSI-2021)

Separation method for Reynolds number/static aeroelastic coupling effect in wind tunnel test

  • GUO Qiuting ,
  • SUN Yan ,
  • GUO Zheng ,
  • LIU Guangyuan
Expand
  • 1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
    2. High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 622762, China;
    3. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-09-02

  Revised date: 2021-09-17

  Online published: 2021-11-10

Supported by

National Natural Science Foundation of China (11802328); National Numerical Wind Tunnel Project (NNW-FSI-2021)

摘要

雷诺数是风洞试验的重要模拟参数之一,目前大多数试验采用增加气体介质密度的方式来提高试验雷诺数。这种试验方式获得的数据中雷诺数与模型静气动弹性效应相互耦合,难以分离,给数据修正和使用带来了较大的困难。针对雷诺数效应风洞试验中雷诺数与结构静变形影响相互耦合的问题,采用流体数值计算和静气动弹性耦合计算相结合的方法,研究了雷诺数和静气动弹性变形对模型气动力系数的影响。在归纳气动力系数随雷诺数和静气动弹性变形的变化规律的基础上,发展了一种雷诺数/静弹性效应数值分离技术,能够准确预测雷诺数与静气动弹性变形对气动力特性的影响。尤其是在刚性模型气动力系数随雷诺数对数呈现近似线性变化的情况下,获得了合理的气动力系数分离结果,为常规风洞增压变雷诺数试验提供了一种简便快捷的数据修正手段。

本文引用格式

郭秋亭 , 孙岩 , 郭正 , 刘光远 . 风洞试验雷诺数/静气动弹性效应分离方法[J]. 航空学报, 2022 , 43(11) : 526312 -526312 . DOI: 10.7527/S1000-6893.2021.26312

Abstract

Reynolds number is one of the important simulation parameters in wind tunnel tests. Currently, a large number of tests increase gas medium density to increase the test Reynolds number. In the data obtained by this test technology, the Reynolds number is difficult to separate as it is coupled with the static aeroelastic effect of the model, bringing difficulties in data correction and application. To solve the coupling problem between the Reynolds number and the static aeroelastic deformation of the model in the Reynolds number effect wind tunnel test, this paper uses a combination of fluid numerical calculation and static aeroelastic coupling calculation to separately study the influence of the Reynolds number and static aeroelastic deformation on the model aerodynamic coefficient. Then a Reynolds number/static aeroelastic numerical separation technology is developed, which can effectively predict the influence of Reynolds number and static aeroelastic deformation on aerodynamic characteristics. Particularly, when the aerodynamic coefficient of the rigid model changes approximately linearly with the logarithm of the Reynolds number, a reasonable aerodynamic coefficient separation result is obtained.

参考文献

[1] 范洁川. 风洞试验手册[M]. 北京:航空工业出版社, 2002:702. FAN J C. Handbook of wind tunnel test[M]. Beijing:Aviation Industry Press, 2002:702(in Chinese).
[2] 周林, 杨钊, 李杰. 雷诺数对运输类飞机气动特性影响的试验研究[J]. 应用力学学报, 2019, 36(4):966-970, 1005. ZHOU L, YANG Z, LI J. Experimental investigation on the influence of Reynolds number on aerodynamic characteristics of transport aircraft[J]. Chinese Journal of Applied Mechanics, 2019, 36(4):966-970, 1005(in Chinese).
[3] ROLSTON S, ELSHOLZ E. Initial achievements of the European high Reynolds number aerodynamic research project "HiReTT":AIAA-2002-0241[R]. Reston:AIAA, 2002.
[4] BURNER A, GOAD W, MASSEY E, et al. Wing deformation measurements of the DLR-F6 transport configuration in the national transonic facility:AIAA-2008-6921[R]. Reston:AIAA, 2008.
[5] EDWARDS J W. National transonic facility model and tunnel vibrations[J]. Journal of Aircraft, 2009, 46(1):46-52.
[6] GREEN J, QUEST J. A short history of the European Transonic Wind Tunnel ETW[J]. Progress in Aerospace Sciences, 2011, 47(5):319-368.
[7] HAINES A B. Scale effects on aircraft and weapon aerodynamics (les effets d'Echelle et l'aerodynamique des aeronefs et des systemes d'armes):AGARD-AG-323[R]. Brussels:AGARD, 1994.
[8] 郑隆乾, 陈迎春, 李亚林, 等. 某民机着陆构型雷诺数效应风洞试验研究[J]. 航空计算技术, 2012, 42(6):70-71, 79. ZHENG L Q, CHEN Y C, LI Y L, et al. Wind tunnel research about Reynolds number effects on landing configuration of a civil aircraft[J]. Aeronautical Computing Technique, 2012, 42(6):70-71, 79(in Chinese).
[9] 王艺坤, 史爱明. 机翼风洞试验模型CFD静气动弹性修正研究[J]. 科学技术与工程, 2012, 12(15):3685-3688. WANG Y K, SHI A M. Static aeroelastic correction for wind tunnel results of wing model with CFD[J]. Science Technology and Engineering, 2012, 12(15):3685-3688(in Chinese).
[10] BALLMANN J. Experimental analysis of high Reynolds number structural dynamics in ETW:AIAA-2008-0841[R]. Reston:AIAA, 2008.
[11] 钟世东, 吴军强, 魏志, 等. 2.4 m跨声速风洞Re数模拟能力及其应用[J]. 实验流体力学, 2008, 22(4):76-79. ZHONG S D, WU J Q, WEI Z, et al. Reynolds number variation capability and applications of 2.4 m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(4):76-79(in Chinese).
[12] 徐敏, 安效民, 陈士橹. 一种CFD/CSD耦合计算方法[J]. 航空学报, 2006, 27(1):33-37. XU M, AN X M, CHEN S L. CFD/CSD couping numerical computational methodology[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(1):33-37(in Chinese).
[13] 郭洪涛, 陈德华, 张昌荣, 等. 基于CFD/CSD方法的跨声速静气动弹性数值模拟应用研究[J]. 空气动力学学报, 2018, 36(1):12-16. GUO H T, CHEN D H, ZHANG C R, et al. Numerical applications on transonic static areoelasticity based on CFD/CSD method[J]. Acta Aerodynamica Sinica, 2018, 36(1):12-16(in Chinese).
[14] ZHANG Z, WANG S, SUN Y. Videogrammetric measurement for model displacement in wind tunnel test[J]. Applied Mechanics and Materials, 2011, 130-134:103-107.
[15] 孙岩, 王昊, 江盟, 等. NNW-FSI软件静气动弹性耦合加速策略设计与实现[J]. 航空学报, 2021, 42(9):625738. SUN Y, WANG H, JIANG M, et al. Design and implementation of coupling acceleration strategy in static aeroelastic module of NNW-FSI software[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9):625738(in Chinese).
[16] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[17] 孙岩, 黄勇, 王运涛, 等. TRIP软件的静气动弹性计算模块开发及精度验证[J]. 空气动力学学报, 2017, 35(5):620-624. SUN Y, HUANG Y, WANG Y T, et al. Development and precision validation of static aeroelastic computational module on flow solver TRIP[J]. Acta Aerodynamica Sinica, 2017, 35(5):620-624(in Chinese).
[18] 王运涛, 王光学, 张玉伦. TRIP2.0软件的确认:DPWⅡ复杂组合体的数值模拟[J]. 航空学报, 2008, 29(1):34-40. WANG Y T, WANG G X, ZHANG Y L. Validation of TRIP 2.0:Numerical simulation of DPWⅡ complex configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):34-40(in Chinese).
[19] 王运涛, 张书俊, 孟德虹. DPW4翼/身/平尾组合体的数值模拟[J]. 空气动力学学报, 2013, 31(6):739-744. WANG Y T, ZHANG S J, MENG D H. Numerical simulation and study for DPW4 wing/body/tail[J]. Acta Aerodynamica Sinica, 2013, 31(6):739-744(in Chinese).
[20] BALLMANN J. Experimental analysis of high Reynolds number structural dynamics in ETW:AIAA-2008-0841[R]. Reston:AIAA, 2008.
[21] Hassan D, Ritter M. Assesment of the ONERA/DLR numerical aeroelastics predication capabilities on the HIRENASD configuration[C]//15th International Forum on Aeroelasticity and Structural Dynamics. Paris:ONERA, 2011.
[22] PETTERSSON K, RIZZI A. Aerodynamic scaling to free flight conditions:Past and present[J]. Progress in Aerospace Sciences, 2008, 44(4):295-313.
[23] VASSBERG J, DEHAAN M, RIVERS M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston:AIAA, 2008.
文章导航

/