流体力学与飞行力学

NACA0012翼型等离子体冰形调控试验

  • 刘雪城 ,
  • 梁华 ,
  • 宗豪华 ,
  • 谢理科 ,
  • 苏志
展开
  • 空军工程大学 等离子体动力学国家级重点实验室,西安 710038

收稿日期: 2021-08-26

  修回日期: 2021-09-30

  网络出版日期: 2021-11-10

基金资助

国家自然科学基金(12002384);国家重点实验室基金(614220210200112)

Experiment on plasma ice shape modulation based on NACA0012 airfoil

  • LIU Xuecheng ,
  • LIANG Hua ,
  • ZONG Haohua ,
  • XIE Like ,
  • SU Zhi
Expand
  • Laboratory of Science and Technology on Plasma Dynamics, Air Force Engineering University, Xi 'an 710038, China

Received date: 2021-08-26

  Revised date: 2021-09-30

  Online published: 2021-11-10

Supported by

National Natural Science Foundation of China (12002384); National Key Laboratory Foundation of China (614220210200112)

摘要

冰形调控是指采用等离子体激励将有限功率集中使用,将危险的展向连续冰调控成更为安全的间断冰,改善飞机容冰飞行能力,在保证飞行器气动性能及飞行安全的前提下,拓宽飞机容冰飞行安全边界的技术。为验证等离子体冰形调控的可行性,在冰风洞中开展等离子体防除冰试验,结果表明纳秒脉冲等离子体冰形调控激励器能够将翼型前缘连续冰调控为间断冰,形成类波浪形前缘,初步验证了等离子体冰形调控的能力。为探究冰形调控技术对翼型气动性能的改善效果,在30 m/s的来流速度下,在NACA0012翼型上间断布置3D打印典型冰形(明冰、霜冰、混合冰),并在风洞中测试其气动性能,对比分析不同的有冰与无冰区域比例、冰条宽度L对翼型气动性能的影响。结果表明:明冰冰形下,有冰∶无冰=1∶1(L=2 cm)时气动性能改善效果最佳,与全冰状态相比最大升力系数提高34.8%,迎角10°时阻力系数降低86.0%。霜冰和混合冰冰形下,分别在有冰∶无冰=3∶2(L=6 cm)、有冰∶无冰=3∶2(L=4 cm)的调控方案下气动性能改善效果最好,最大升力系数分别提高了19.7%、30.6%,阻力系数明显降低。

本文引用格式

刘雪城 , 梁华 , 宗豪华 , 谢理科 , 苏志 . NACA0012翼型等离子体冰形调控试验[J]. 航空学报, 2022 , 43(9) : 126283 -126283 . DOI: 10.7527/S1000-6893.2021.26283

Abstract

Ice shape modulation is a technology that significantly reduces the power of anti-icing and broadens the safety boundary of ice-tolerant flight under the premise of ensuring the aerodynamic performance and flight safety of the aircraft. It uses the power excited by the plasma actuator to change the dangerous spanwise continuous ice into safer intermittent ice, thereby improving the ice-containing flight capability of the aircraft. To verify the feasibility of the technology, plasma anti-icing experiments were carried out in the ice wind tunnel. The results show that the nanosecond pulse plasma actuator can change the continuous ice in the airfoil front edge into discontinuous ice. The formation of a wave-like front edge preliminarily verifies the ability of plasma ice shape modulation. To explore the effect of the technology on the aerodynamic performance of the wing, 3D printed typical ice shapes (glaze ice, rime ice, and mixed ice) were intermittently arranged on the NACA0012 airfoil at an incoming flow velocity of 30 m/s. The aerodynamic performance was tested in the wind tunnel, and the influence of different ratios of icing area to non-icing area and the width of the icicle L on the aerodynamic performance of the airfoil was compared and analyzed. The results show that for the glaze ice, the aerodynamic performance has the best improvement when the ratio of icing area to non-icing area is equal to 1∶1 (L=2 cm), with the maximum lift coefficient being increased by 34.8% and the drag coefficient at the angle of attack of 10° being reduced by 86.0% in comparison with the full-ice state. For the rime ice and mixed ice, the aerodynamic performance has the best improvement when the ratio is equal to 3∶2 (L=6 cm) and to 3∶2 (L=4 cm), with the maximum lift coefficient being increased by 19.7% and 30.6% respectively and the drag coefficient being significantly reduced in comparison with the full-ice state.

参考文献

[1] MA L. Aircraft icing and flight safety[J]. Ciuil Aviation Economics & Technology, 1999(5): 37-38 (in Chinese). 马玲. 飞机积冰与飞行安全[J]. 民航经济与技术, 1999(5): 37-38.
[2] JIANG T J. Investigation of icing accretion influences on aircraft flight performance[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 28-39 (in Chinese). 蒋天俊. 结冰对飞机飞行性能影响的研究[D]. 南京: 南京航空航天大学, 2008: 28-39.
[3] WANG Q D. Investigation of the aircraft longitudinal stability and control with ice accretion[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009: 16-24 (in Chinese). 王起达. 结冰后飞机的纵向稳定性和操纵性研究[D]. 南京: 南京航空航天大学, 2009: 16-24.
[4] LI Q Y, BAI T, ZHU C L. Research summary ofmechnical de-icing systems of aircrafts[J]. Aircraft Design, 2015, 35(4): 73-77 (in Chinese). 李清英, 白天, 朱春玲. 飞机机械除冰系统的研究综述[J]. 飞机设计, 2015, 35(4): 73-77.
[5] LI Q Y, ZHU C L, BAI T. De-icing experiment and numerical simulation of the electro-impulse de-icing system[J]. Journal of Aerospace Power, 2012, 27(2): 350-356 (in Chinese). 李清英, 朱春玲, 白天. 电脉冲除冰系统的除冰实验与数值模拟[J]. 航空动力学报, 2012, 27(2): 350-356.
[6] LEVIN I A. USSR electric impulse de-icing system design[J]. Aircraft Engineering and Aerospace Technology, 1972, 44(7): 7-10.
[7] Aircraft de-icing/anti-icing fluids-ISO type Ⅰ: ISO 11075—2007[S]. 2007 (in Chinese). 航空器除冰液和防冰液. ISO Ⅰ型: ISO 11075—2007[S]. 2007.
[8] ENGINEERS S O A. Fluid, aircraft deicing/anti-icing, non-Newtonian, (pseudoplastic): SAE types Ⅱ, Ⅲ, and Ⅳ[R]. 1998.
[9] PLANQUART P, BORRE G V, BUCHLIN J M. Experimental and numerical optimization of a wing leading edge hot air anti-icing system[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
[10] BU X Q, YU J, LIN G P, et al. Investigation of the design of wing hot-air anti-icing system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8): 927-930 (in Chinese). 卜雪琴, 郁嘉, 林贵平, 等. 机翼热气防冰系统设计[J]. 北京航空航天大学学报, 2010, 36(8): 927-930.
[11] LIN G P, BU X Q, SHEN X B. Aircraft icing and anti-icing technology[M]. Beijing: Beihang University Press, 2016: 32-36 (in Chinese). 林贵平, 卜雪琴, 申晓斌. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016: 32-36.
[12] GU H Y, SANG W M, PANG R, et al. Numericalsimulation of wing hot air anti-icing and ice ridge formation[J]. Physics of Gases, 2019, 4(4): 41-49 (in Chinese). 顾洪宇, 桑为民, 庞润, 等. 机翼热气防冰及冰脊形成数值模拟[J]. 气体物理, 2019, 4(4): 41-49.
[13] TIRUMALA R, BENARD N, MOREAU E, et al. Temperature characterization of dielectric barrier discharge actuators: Influence of electrical and geometric parameters[J]. Journal of Physics D: Applied Physics, 2014, 47(25): 255203.
[14] POPOV N A. Fast gas heating in a nitrogen-oxygen discharge plasma: Ⅰ. Kinetic mechanism[J]. Journal of Physics D: Applied Physics, 2011, 44(28): 285201.
[15] LIU Y, KOLBAKIR C, HU H Y, et al. An explorative study to use thermal effects of duty-cycled plasma actuation for aircraft icing mitigation[C]//2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018.
[16] PETRENKO V F. Plasma-based de-icing: US200201709-09[P]. 2002-11-21.
[17] MENG X, CHEN Z, SONG K. AC-and NS-DBD plasma flow control research[C]//Proceedings of the 2nd NPU-DLR Workshop on Aerodynamics. Cologne: German Aerospace Center (DLR), 2014.
[18] CAI J S, TIAN Y Q, MENG X S, et al. A dielectric barrier discharge plasma deicing device and method[P]. 2015-09-09 (in Chinese). 蔡晋生, 田永强, 孟宣市, 等. 一种介质阻挡放电等离子体除积冰装置及方法[P]. 2015-09-09.
[19] JAKOB VAN DEN B. De-icing using ns-DBD plasma actuators[D]. Delft: Delft University of Technology, 2016.
[20] LIU Y, KOLBAKIR C, HU H. A parametric study to explore ns-DBD plasma actuation for aircraft icing mitigation[C]//2018 Flow Control Conference. Reston, AIAA, 2018.
[21] ZHOU W W, LIU Y, HU H Y, et al. Utilization of thermal effect induced by AC-DBD plasma generation for aircraft icing mitigation[C]//2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018.
[22] MENG X S, HU H Y, LI C, et al. Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing[J]. Physics of Fluids, 2019, 31(3): 037103.
[23] WEI B, WU Y, LIANG H, et al. Flow control on a high-lift wing with microsecond pulsed surface dielectric barrier discharge actuator[J]. Aerospace Science and Technology, 2020, 96: 105584.
[24] FISH F E, BATTLE J M. Hydrodynamic design of the humpback whale flipper[J]. Journal of Morphology, 1995, 225(1): 51-60.
[25] MIKLOSOVIC D S, MURRAY M M, HOWLE L E, et al. Leading-edge tubercles delay stall on humpback whale (Megaptera novaeangliae) flippers[J]. Physics of Fluids, 2004, 16(5): L39-L42.
[26] WANG G F. Study on FlowSeparation control and application of bionic wavy edge airfoil[D]. Beijing: Chinese Academy of Sciences, 2014: 33-77 (in Chinese). 王国付. 仿鲸鱼鳍凹凸前缘翼型流动分离控制及应用研究[D]. 北京: 中国科学院研究生院, 2014: 33-77.
[27] WU Y, WEI B, LIANG H, et al. Novel plasma ice shape regulation and control device and method and anti-icing aircraft: CN110481792A[P]. 2019-11-22 (in Chinese). 吴云, 魏彪, 梁华, 等. 一种新型等离子体冰形调控装置, 方法及防结冰型飞行器: CN110481792A[P]. 2019-11-22.
[28] SHIN J, CHEN H, CEBECI T. A turbulence model for iced airfoils and its validation[C]//30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992.
[29] LYU T. Aerodynamic characteristics analysis of icing aircraft wing[D]. Harbin: Harbin Engineering University, 2015: 38-52 (in Chinese). 吕涛. 结冰情况下机翼的气动特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2015: 38-52.
[30] LI X K, LIU W, ZHANG T J, et al. Experimental and numerical analysis of the effect of vortex generator installation angle on flow separation control[J]. Energies, 2019, 12(23): 4583.
[31] CHEN W J, ZHANG D L. Numericalsimulation of ice accretion on airfoils[J]. Journal of Aerospace Power, 2005, 20(6): 1010-1017 (in Chinese). 陈维建, 张大林. 飞机机翼结冰过程的数值模拟[J]. 航空动力学报, 2005, 20(6): 1010-1017.
文章导航

/