新一代超声速民机气动关键技术专栏

超声速理想膨胀喷流噪声的大涡模拟

  • 施方成 ,
  • 高振勋 ,
  • 田雨岩 ,
  • 蒋崇文 ,
  • 王田天 ,
  • 李椿萱
展开
  • 1.北京航空航天大学 航空科学与工程学院,北京  100191
    2.湖南大学 机械与运载工程学院,长沙  410082

收稿日期: 2021-08-23

  修回日期: 2021-09-06

  录用日期: 2021-11-03

  网络出版日期: 2021-11-10

基金资助

国家自然科学基金(11872094)

Large eddy simulation of ideally expanded supersonic jet noise

  • Fangcheng SHI ,
  • Zhenxun GAO ,
  • Yuyan TIAN ,
  • Chongwen JIANG ,
  • Tiantian WANG ,
  • Chun-Hian LEE
Expand
  • 1.School of Aeronautic Science and Engineering,Beihang University,Beijing  100191,China
    2.College of Mechanical and Vehicle Engineering,Hunan University,Changsha  410082,China

Received date: 2021-08-23

  Revised date: 2021-09-06

  Accepted date: 2021-11-03

  Online published: 2021-11-10

Supported by

National Natural Science Foundation of China(11872094)

摘要

为探究亚格子模型和热效应对超声速喷流流场与声场的影响规律,采用LES/FW-H混合算法对超声速理想膨胀喷流开展了数值模拟参数研究。首先,通过对比数值模拟与实验数据详细验证了LES/FW-H混合算法的可靠性,并结合Tam相似谱理论确定了实验与数值模拟中声场出现偏差的原因在于实验中存在宽频激波噪声。之后,讨论了亚格子模型对流场平均量、湍流统计量和噪声特征的影响,数据对比表明动态Smagorinsky模型的模拟结果与隐式亚格子模型的结果一致,且均与已有实验和数值模拟结果相符;而采用常系数Smagorinsky模型将导致流场和声场结果出现明显偏差。最后,通过改变喷流出口总温研究了热效应对超声速理想膨胀喷流流场与声场的影响,研究发现喷流总温升高增大了无量纲的高频流向速度脉动,同时对远场高频噪声具有显著的增强效应。

本文引用格式

施方成 , 高振勋 , 田雨岩 , 蒋崇文 , 王田天 , 李椿萱 . 超声速理想膨胀喷流噪声的大涡模拟[J]. 航空学报, 2023 , 44(2) : 626266 -626266 . DOI: 10.7527/S1000-6893.2021.26266

Abstract

To investigate the influence of the subgrid model and thermal effect on the flowfield and sound field of the supersonic jet, parameter studies are performed by using the LES/FW-H hybrid method. First, the reliability of the LES/FW-H hybrid method is verified through comparison of the numerical simulation and the experimental data. Meanwhile, the noise differences between the simulation and experimental results are studied, and the comparison with Tam’s similarity spectra shows that the differences are resulted from the broadband shock-associated noise. Then, the influences of the subgrid model on the mean flowfield, turbulence statistics, and noise characteristics are discussed. The comparisons indicate that the simulation results of the dynamic Smagorinsky model are consistent with those of the implicit subgrid model, both of which are consistent with the existing experiments and numerical simulations. However, the simulation with the constant Smagorinsky model leads to obvious deviations in the flowfield and the sound field. Finally, the influences of the thermal effect on the flowfield and the sound field of the ideally expanded supersonic jet are studied by changing the total temperature at the nozzle exit. It is found that the total temperature increase intensifies the non-dimensional streamwise velocity fluctuation in the high-frequency range and also enhances the far-field high-frequency noise.

参考文献

1 冷岩, 钱战森, 杨龙. 均匀各向同性大气湍流对声爆传播特性的影响[J]. 航空学报202041(2): 123290.
  LENG Y, QIAN Z S, YANG L. Homogeneous isotropic atmospheric turbulence effects on sonic boom propagation[J]. Acta Aeronautica et Astronautica Sinica202041(2): 123290 (in Chinese).
2 张俊龙, 雷红胜, 田昊, 等. 亚声速矩形射流的噪声辐射特性和声源分布[J]. 航空学报202041(2): 123386.
  ZHANG J L, LEI H S, TIAN H, et al. Noise radiation characteristics and source distribution of subsonic rectangular jet[J]. Acta Aeronautica et Astronautica Sinica202041(2): 123386 (in Chinese).
3 HUFF D L. NASA glenn’s contributions to aircraft engine noise research[J]. Journal of Aerospace Engineering201326(2): 218-250.
4 COLONIUS T, LELE S K. Computational aeroacoustics: Progress on nonlinear problems of sound generation[J]. Progress in Aerospace Sciences200440(6): 345-416.
5 FREUND J B, LELE S K, MOIN P. Numerical simulation of a Mach 1.92 turbulent jet and its sound field[J]. AIAA Journal200038(11): 2023-2031.
6 SHARAN N, BELLAN J R. Direct numerical simulation of high-pressure free jets[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021.
7 MILLER S A. Towards a comprehensive model of jet noise using an acoustic analogy and steady RANS solutions[C]∥19th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2013.
8 BAI B H, LI X D, CHEN H X. A semi-empirical prediction method for the fine scale turbulence mixing noise[C]∥25th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2019.
9 MANKBADI R R, HAYER M E, POVINELLI L A. Structure of supersonic jet flow and its radiated sound[J]. AIAA Journal199432(5): 897-906.
10 DEBONIS J R, SCOTT J N. Large-eddy simulation of a turbulent compressible round jet[J]. AIAA Journal200240(7): 1346-1354.
11 BODONY D, RYU J, RAY P, et al. Investigating broadband shock-associated noise of axisymmetric jets using large-eddy simulation[C]∥12th AIAA/CEAS Aeroacoustics Conference, 27th AIAA Aeroacoustics Conference). Reston: AIAA, 2006.
12 MENDEZ S, SHOEYBI M, SHARMA A, et al. Large-eddy simulations of perfectly expanded supersonic jets using an unstructured solver[J]. AIAA Journal201250(5): 1103-1118.
13 LO S C, AIKENS K M, BLAISDELL G A, et al. Numerical investigation of 3-D supersonic jet flows using large-eddy simulation[J]. International Journal of Aeroacoustics201211(7&8): 783-812.
14 SHUR M L, SPALART P R, STRELETS M K, et al. Analysis of jet-noise-reduction concepts by large-eddy simulation[J]. International Journal of Aeroacoustics20076(3): 243-285.
15 VISWANATHAN K, SHUR M, SPALART P R, et al. Flow and noise predictions for single and dual-stream beveled nozzles[J]. AIAA Journal200846(3): 601-626.
16 LIU J H, KAILASANATH K, RAMAMURTI R, et al. Large-eddy simulations of a supersonic jet and its near-field acoustic properties[J]. AIAA Journal200947(8): 1849-1865.
17 AIKENS K M, BLAISDELL G A, LYRINTZIS A S. Analysis of converging-diverging beveled nozzle jets using large eddy simulation with a wall model[C]∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
18 NONOMURA T, NAKANO H, OZAWA Y, et al. Large eddy simulation of acoustic waves generated from a hot supersonic jet[J]. Shock Waves201929(8): 1133-1154.
19 CODERONI M, LYRINTZIS A S, BLAISDELL G A. Large-eddy simulations analysis of supersonic heated jets with fluid injection for noise reduction[J]. AIAA Journal201957(8): 3442-3455.
20 SAGAUT P. Large eddy simulation for incompressible flows[M]. Berlin: Springer Berlin Heidelberg, 2002.
21 UZUN A, LYRINTZIS A, BLAISDELL G. Coupling of integral acoustics methods with LES for jet noise prediction[C]∥42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
22 LO S C, BLAISDELL G, LYRINTZIS A, et al. Numerical investigation of 3-D supersonic jet flows using large-eddy simulation[J]. International Journal of Aeroacoustics201211(7&8): 783-812.
23 JUNQUEIRA-JUNIOR C, YAMOUNI S, AZEVEDO J L F, et al. Influence of different subgrid-scale models in low-order LES of supersonic jet flows[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering201840(5): 258.
24 ZHAO W, FRANKEL S H, MONGEAU L. Large eddy simulations of sound radiation from subsonic turbulent jets[J]. AIAA Journal200139(8): 1469-1477.
25 UZUN A, BLAISDELL G A, LYRINTZIS A S. Sensitivity to the smagorinsky constant in turbulent jet simulations[J]. AIAA Journal200341(10): 2077-2079.
26 ANDERSSON N, ERIKSSON L E, DAVIDSON L. Effects of inflow conditions and subgrid model on LES for turbulent jets[C]∥11th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2005.
27 BOGEY C, BAILLY C. Decrease of the effective Reynolds number with eddy-viscosity subgrid modeling[J]. AIAA Journal200543(2): 437-439.
28 SHUR M L, SPALART P R, STRELETS M K. Noise prediction for increasingly complex jets. part I: Methods and tests[J]. International Journal of Aeroacoustics20054(3): 213-245.
29 BOGEY C, BAILLY C. Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model[J]. International Journal of Heat and Fluid Flow200627(4): 603-610.
30 UZUN A, BLAISDELL G A, LYRINTZIS A S. Impact of subgrid-scale models on jet turbulence and noise[J]. AIAA Journal200644(6): 1365-1368.
31 TAM C K W, PASTOUCHENKO N N, VISWANATHAN K. Fine-scale turbulence noise from hot jets[J]. AIAA Journal200543(8): 1675-1683
32 BRIDGES J. Effect of heat on space-time correlations in jets[C]∥12th AIAA/CEAS Aeroacoustics Conference, 27th AIAA Aeroacoustics Conference. Reston: AIAA, 2006.
33 LAU J C. Effects of exit Mach number and temperature on mean-flow and turbulence characteristics in round jets[J]. Journal of Fluid Mechanics1981105: 193-218.
34 LOPEZ RODRIGUEZ O, SALEEM M, GUTMARK E J, et al. Study of temperature effect on flow and acoustic behavior of supersonic jet emanating from a faceted nozzle[C]∥AIAA Scitech 2021 Forum. Reston: AIAA, 2021.
35 NAKANO H, NONOMURA T, OYAMA A, et al. Quantitative evaluation of effect of jet temperature on acoustic waves from supersonic jets at Mach 2.0 by large eddy simulations[C]∥2018 AIAA Aerospace Sciences Meeting. Reston: AIAA, 2018.
36 SEINER J M, PONTON M K, JANSEN B J, et al. The effects of temperature on supersonic jet noise emission[C]∥14th DGLR/AIAA Aeroacoustics Conference, 1992.
37 VISWANATHAN K. Aeroacoustics of hot jets[C]∥8th AIAA/CEAS Aeroacoustics Conference & Exhibit. Reston: AIAA, 2002.
38 TANNA H K. An experimental study of jet noise part I: Turbulent mixing noise[J]. Journal of Sound and Vibration197750(3): 405-428.
39 BHAT T. Reynols number and temperature effects on jet noise[C]∥13th AIAA/CEAS Aeroacoustics Conference, 28th AIAA Aeroacoustics Conference. Reston: AIAA, 2007.
40 HOCH R G, DUPONCHEL J P, COCKING B J, et al. Studies of the influence of density on jet noise[J]. Journal of Sound and Vibration197328(4): 649-668.
41 GARNIER E, ADAMS N, SAGAUT P. Boundary conditions for large-eddy simulation of compressible flows[M]∥Scientific computation. Dordrecht: Springer Netherlands, 2009: 155-184.
42 POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.
43 ADAMS N A. The role of deconvolution and numerical discretization in subgrid-scale modeling[M]∥Direct and large-eddy simulation IV. Dordrecht: Springer Netherlands, 2001: 311-320.
44 NONOMURA T, TERAKADO D, ABE Y, et al. A new technique for freestream preservation of finite-difference WENO on curvilinear grid[J]. Computers & Fluids2015107: 242-255.
45 MOIN P, SQUIRES K, CABOT W, et al. A dynamic subgrid-scale model for compressible turbulence and scalar transport[J]. Physics of Fluids A: Fluid Dynamics19913(11): 2746-2757.
46 FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences1969264(1151): 321-342.
47 SHI F C, GAO Z X, JIANG C W, et al. Numerical investigation of shock-turbulent mixing layer interaction and shock-associated noise[J]. Physics of Fluids202133(2): 025105.
48 SHI F C, GAO Z X, JIANG C W, et al. Investigation on noise from shock/isotropic turbulence interaction using direct numerical simulation[J]. Journal of Sound and Vibration2020488: 115633.
49 SHU C W, OSHER S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics198877(2): 439-471.
50 LIOU M S. A sequel to AUSM: AUSM+ [J]. Journal of Computational Physics1996129(2): 364-382.
51 BRIDGES J, WERNET M. Turbulence associated with broadband shock noise in hot jets[C]∥14th AIAA/CEAS Aeroacoustics Conference, 29th AIAA Aeroacoustics Conference. Reston: AIAA, 2008.
52 BOGEY C, MARSDEN O. Influence of nozzle-exit boundary-layer profile on high-subsonic jets[C]∥20th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2014.
53 WHITE F M. Viscous fluid flow[M]. 3rd ed. New York: McGraw-Hill Higher Education, 2006.
54 BOGEY C, BAILLY C. Influence of nozzle-exit boundary-layer conditions on the flow and acoustic fields of initially laminar jets[J]. Journal of Fluid Mechanics2010663: 507-538.
55 LAU J C, MORRIS P J, FISHER M J. Measurements in subsonic and supersonic free jets using a laser velocimeter[J]. Journal of Fluid Mechanics197993: 1-27.
56 HUSSEIN H J, CAPP S P, GEORGE W K. Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet[J]. Journal of Fluid Mechanics1994258: 31-75.
57 SHARMA A, BHASKARAN R, LELE S K. Large-eddy simulation of supersonic, turbulent mixing layers downstream of a splitter plate[C]∥49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011.
58 TAM C K W, GOLEBIOWSKI M, SEINER J. On the two components of turbulent mixing noise from supersonic jets[C]∥Aeroacoustics Conference. Reston: AIAA, 1996.
59 TAM C K W, ZAMAN K B M Q. Subsonic jet noise from nonaxisymmetric and tabbed nozzles[J]. AIAA Journal200038(4): 592-599.
60 VISWANATHAN K. Scaling laws and a method for identifying components of jet noise[J]. AIAA Journal200644(10): 2274-2285.
61 TAM C K W, HORNE W C, BURNSIDE N J, et al. Spectral analysis of the acoustic near field of a solid-propellant rocket[J]. AIAA Journal201756(3): 949-963.
62 NORUM T D, SEINER J M. Measurements of mean static pressure and far-field acoustics of shock-containing supersonic jets: NASA-TM-84521 [R].Washington, D.C.: NASA, 1982.
文章导航

/