固体力学与飞行器总体设计

起落架开舱构型自激振荡预测公式改进与分析

  • 鄢荣 ,
  • 何逸文 ,
  • 李凯翔 ,
  • 李鹏 ,
  • 牟让科 ,
  • 史爱明
展开
  • 1. 西北工业大学 航空学院 NPU-Duke空气动力与气动弹性联合实验室, 西安 710072;
    2. 中国飞机强度研究所 航空声学与振动航空科技重点实验室, 西安 710065

收稿日期: 2021-07-21

  修回日期: 2021-10-15

  网络出版日期: 2021-11-10

基金资助

民机专项(CARP-2018F8-3);国家自然科学基金(10602046)

Improved formula for prediction of self-sustained oscillation frequencies of bay-opening cabin with landing gear

  • YAN Rong ,
  • HE Yiwen ,
  • LI Kaixiang ,
  • LI Peng ,
  • MU Rangke ,
  • SHI Aiming
Expand
  • 1. NPU-Duke Aerodynamics and Aeroelasticity Group, College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Key Laboratory of Aeronautical Acoustics and Vibration, Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2021-07-21

  Revised date: 2021-10-15

  Online published: 2021-11-10

Supported by

The Project of the Ministry of Industry and Information Technology of China (CARP-2018F8-3); National Natural Science Foundation of China (10602046)

摘要

起落架开舱构型的流动模态产生自激振荡,造成舒适性和安全性问题;深入研究该流动模态和自激振荡机理是解决这一问题的关键。本文采用延迟脱体涡模拟(DDES)对起落架开舱构型的流动特性和气动特性进行了分析。结合Rossiter公式与涡声耦合闭环反馈机制,提出了一种适用于起落架舱的自激振荡频率预测公式的修正方法,能够将舱体前后壁面不等高、前缘弧面整流以及起落架的影响考虑在内;并且通过功率谱主频比对验证了修正公式的有效性。此外,引入动力学模态分解(DMD)方法分析自激振荡机理;分析结果显示,随着模态数增大,壁面压强响应逐步从舱体后缘向前缘发展。

本文引用格式

鄢荣 , 何逸文 , 李凯翔 , 李鹏 , 牟让科 , 史爱明 . 起落架开舱构型自激振荡预测公式改进与分析[J]. 航空学报, 2022 , 43(12) : 226140 -226140 . DOI: 10.7527/S1000-6893.2021.26140

Abstract

The flow pattern of the bay-opening landing gear configuration produces self-sustained oscillations, causing comfort and safety issues. A deep research on the flow pattern and resonance mechanism is the key to solve the issues. In this paper, Delayed Detached Eddy Simulation (DDES) is used to analyze the flow characteristics and aerodynamic characteristics of the typical bay-opening landing gear configuration. Combining the Rossiter formula and the vortex-acoustic coupling closed-loop feedback mechanism, a method is proposed to modify the formula for self-excited oscillation frequency prediction for the landing gear cabin. The method can take into account the influence of the unequal height of the front and rear walls of the cabin, the arc fairing and the landing gear. The improved formula is verified by power spectrum dominant frequency comparison. Besides, Dynamic Mode Decomposition (DMD) is introduced to analyze the mechanism of self-sustained oscillation. Analysis results show that with the increase of the number of modes, wall pressure fluctuation develops from the trailing edge to the leading edge in the cabin.

参考文献

[1] BOWLES M D. The "Apollo" of Aeronautics:NASA's aircraft energy efficiency program, 1973-1987:SP-2009-574[R]. Washington, D.C.:NASA, 2010.
[2] BRUNER S, BABER S, HARRIS C, et al. NASA N+3 subsonic fixed wing Silent Efficient Low-Emissions Commercial Transport (SELECT) vehicle study:CR-2010-216798[R]. Washington, D.C.:NASA, 2010.
[3] 宋笔锋, 张彬乾, 韩忠华. 大型客机总体设计准则与概念创新[J]. 航空学报, 2008, 29(3):583-595. SONG B F, ZHANG B Q, HAN Z H. The study of concept design criteria for large-scale passenger aircraft with new technologies[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):583-595(in Chinese).
[4] CURREY N S. Aircraft landing gear design:Principles and practices[M]. Reston:AIAA, 1988.
[5] ZUCCA G, FRANCESCO V D, BERNABEI M, et al. Failure investigation:In flight loss of a main landing gear door of a transport aircraft[J]. Procedia Structural Integrity, 2017, 3:553-561.
[6] 游凡. 主起落架舱门放下影响因素研究[J]. 科技视界, 2017(5):114-115. YOU F. Influence factors research on main landing gear door extension fault[J]. Science & Technology Vision, 2017(5):114-115(in Chinese).
[7] 张飞, 李凯翔, 周江贝. 某型飞机客舱座椅人体振动舒适性评价研究[J]. 强度与环境, 2019, 46(4):59-63. ZHANG F, LI K X, ZHOU J B. Evaluation on human body vibration comfort of aircraft cabin seat[J]. Structure & Environment Engineering, 2019, 46(4):59-63(in Chinese).
[8] LANGTRY R, SPALART P. DES investigation of devices for reducing landing-gear cavity noise[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2008.
[9] DOBRZYNSKI W. Almost 40 years of airframe noise research:what did we achieve?[J]. Journal of Aircraft, 2010, 47(2):353-367.
[10] KIPERSZTOK O, SENGUPTA G. Flight test of the 747-JT9D for airframe noise[J]. Journal of Aircraft, 1982, 19(12):1061-1069.
[11] HELLER H H, DOBRZYNSKI W M. Sound radiation from aircraft wheel-WelVLanding-gear configurations[J]. Journal of Aircraft, 1977, 14(8):768-774.
[12] FINK M R. Noise component method for airframe noise[J]. Journal of Aircraft, 1979, 16(10):659-665.
[13] GUO Y P, YAMAMOTO K J, STOKER R W. Experimental study on aircraft landing gear noise[J]. Journal of Aircraft, 2006, 43(2):306-317.
[14] STRELETS M. Detached eddy simulation of massively separated flows[C]//39th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001.
[15] HEDGES L S, TRAVIN A K, SPALART P R. Detached-Eddy simulations over a simplified landing gear[J]. Journal of Fluids Engineering, Transactions of the ASME, 2002, 124(2):413-423.
[16] LAZOS B S. Mean flow features around the inline wheels of four-wheel landing gear[J]. AIAA Journal, 2002, 40(2):193-198.
[17] DONG Q L, XU H Y, YE Z Y. Numerical investigation of unsteady flow past rudimentary landing gear using DDES, LES and URANS[J]. Engineering Applications of Computational Fluid Mechanics, 2018, 12(1):689-710.
[18] VENKATAKRISHNAN L, KARTHIKEYAN N, MEJIA K. Experimental studies on a rudimentary four-wheel landing gear[J]. AIAA Journal, 2012, 50(11):2435-2447.
[19] ROSSITER J. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds:3438[R]. London:Aeronautical Research Council Reports and Memoranda, 1964.
[20] HELLER H H, HOLMES D G, COVERT E E. Flow-induced pressure oscillations in shallow cavities[J]. Journal of Sound and Vibration, 1971, 18(4):545-553.
[21] BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25:539-575.
[22] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656:5-28.
[23] SEENA A, SUNG H J. Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations[J]. International Journal of Heat and Fluid Flow, 2011, 32(6):1098-1110.
[24] LIU Z, NING F L, ZHAI Q B, et al. Study on oscillation phenomena in morphing cavities with ramps of leading wall[J]. Journal of Aircraft, 2020, 58(3):436-447.
[25] RICCIARDI T R, WOLF W R, MOFFITT N J, et al. Numerical noise prediction and source identification of a realistic landing gear[J]. Journal of Sound and Vibration, 2021, 496:115933.
[26] The Boeing Company. 737 flight crew operations manual[EB/OL]. (2020-11-23)[2021-07-20]. http://www.b737.org.uk/fcom.htm.
[27] MENTER F R, KUNTZ M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[C]//The Aerodynamics of Heavy Vehicles:Trucks, Buses, and Trains, 2004.
[28] ANSYS CFX. CFX-Solver theory guide[EB/OL]. (2019-08-31)[2021-07-20]. https://ansyshelp.ansys.com/account/secured?returnurl=/Views/Secured/corp/v194/cfx_thry/cfx_thry.html.
[29] XIAO Z X, LIU J, LUO K Y, et al. Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches[J]. AIAA Journal, 2012, 51(1):107-125.
[30] 梁勇, 陈迎春, 赵鲲, 等. 低速开式空腔自激反馈流场结构与流致噪声的风洞试验研究[J]. 声学学报, 2020, 45(6):859-868. LIANG Y, CHEN Y C, ZHAO K, et al. Wind tunnel experimental study of self oscillation feedback flow field structure and flow induced aeroacoustic for open cavity at low speed[J]. Acta Acustica, 2020, 45(6):859-868(in Chinese).
[31] 梁勇, 陈迎春, 赵鲲, 等. 锯齿单元对起落架/舱体耦合噪声抑制试验[J]. 航空学报, 2019, 40(8):122932. LIANG Y, CHEN Y C, ZHAO K, et al. Test on suppression of aircraft landing gear/bay coupling noise using sawtooth spoiler[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8):122932(in Chinese).
[32] HAASE W, BRAZA M, REVELL A. DESider-A European effort on hybrid RANS-LES modelling[M]. Berlin:Springer Berlin Heidelberg, 2009.
[33] DUBIEF Y, DELCAYRE F. On coherent-vortex identification in turbulence[J]. Journal of Turbulence, 2000, 1:N11.
[34] VIO G A, HAMILTON SMITH C O, MURRAY A J, et al. Simulation of low speed cavity flow with complex geometry[C]//AIAA Scitech 2021 Forum. Reston:AIAA, 2021.
[35] 魏佳云, 李伟鹏, 许思为, 等. 基于DMD方法的缝翼低频噪声机理分析[J]. 航空学报, 2018, 39(1):121469. WEI J Y, LI W P, XU S W, et al. Analysis of mechanism of slat low frequency noise based on zonal DMD[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121469(in Chinese).
[36] 叶坤, 叶正寅, 武洁, 等. DMD和POD对超燃冲压发动机凹腔流动的稳定性分析[J]. 气体物理, 2016, 1(5):39-51. YE K, YE Z Y, WU J, et al. Stability analysis of scramjet open cavity flow base on POD and DMD method[J]. Physics of Gases, 2016, 1(5):39-51(in Chinese).
[37] KOU J Q, ZHANG W W. An improved criterion to select dominant modes from dynamic mode decomposition[J]. European Journal of Mechanics-B/Fluids, 2017, 62:109-129.
文章导航

/