高超声速数值激波失稳的网格依赖性

  • 任伟杰 ,
  • 谢文佳 ,
  • 田正雨 ,
  • 张烨 ,
  • 于航
展开
  • 国防科技大学 空天科学学院, 长沙 410073

收稿日期: 2021-09-01

  修回日期: 2021-09-14

  网络出版日期: 2021-10-18

基金资助

国家自然科学基金(11472004);国防科大校科研计划(ZK21-10)

Grid dependence of hypersonic numerical shock instability

  • REN Weijie ,
  • XIE Wenjia ,
  • TIAN Zhengyu ,
  • ZHANG Ye ,
  • YU Hang
Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2021-09-01

  Revised date: 2021-09-14

  Online published: 2021-10-18

Supported by

National Natural Science Foundation of China (11472004); Scientific Research Project of National University of Defense Technology (ZK21-10)

摘要

高超声速强激波的稳定捕捉仍极具挑战性。目前工程计算中普遍应用的数值格式在模拟多维强激波时通常会遭遇明显的激波不稳定现象,且数值格式的激波稳定性对计算网格表现出严重的依赖性。基于矩阵稳定性分析法,对比了具有不同耗散性质的数值格式稳定捕捉激波的能力,分析了空间二阶精度格式的激波稳定性及限制器对激波稳定性的影响。在此基础上,重点探究了计算网格对激波稳定性的影响规律,研究了网格长宽比和畸变角度对激波稳定性的影响。结果显示,在激波附近通过增大网格长宽比或改变网格畸变角度可有效改善激波捕捉的稳定性;相比于增大网格长宽比,改变网格畸变角度提升激波捕捉稳定性的效果更加明显。在此基础上,结合数值耗散分析对高马赫数下数值激波失稳现象的网格依赖性机制进行了探讨。

本文引用格式

任伟杰 , 谢文佳 , 田正雨 , 张烨 , 于航 . 高超声速数值激波失稳的网格依赖性[J]. 航空学报, 2021 , 42(S1) : 726376 -726376 . DOI: 10.7527/S1000-6893.2021.26376

Abstract

The stable capture of hypersonic strong shock waves is still extremely challenging. At present, the numerical scheme used in engineering calculations usually encounters obvious shock instability when simulating multi-dimensional strong shock waves. Moreover, the shock stability of the numerical scheme depends on the computational grid. Based on the method of matrix stability analysis, this paper compared the ability of numerical schemes with different dissipation properties to capture shock waves, and analysed the shock stability of spatial second-order precision schemes as well as the effect of different limiters. On this basis, this paper explored the influence of computing grid on shock stability, and the influence of aspect ratio and distortion angle of grid on shock wave stability was studied. The research results show that in the vicinity of the shock wave, increasing the grid aspect ratio or the grid distortion angle can effectively improve the stability of shock capture. Moreover, compared to increasing the grid aspect ratio, changing the grid distortion angle has a more obvious effect on improving the stability of shock capture. Numerical dissipation analysis is conducted, and the grid-dependent mechanism of numerical shock instability under high Mach number is discussed.

参考文献

[1] PEERY K, IMLAY S. Blunt-body flow simulations[C]//24th Joint Propulsion Conference. Reston: AIAA, 1988.
[2] QUIRK J J. A contribution to the great Riemann solver debate[J]. International Journal for Numerical Methods in Fluids, 1994, 18(6): 555-574.
[3] BARTH T J. Some notes on shock resolving flux functions. Part 1: Stationary characteristics: NASA-TM-101087[R].Washington, D.C.: NASA, 1989.
[4] PANDOLFI M, D’AMBROSIO D. Numerical instabilities in upwind methods: Analysis and cures for the "carbuncle" phenomenon[J]. Journal of Computational Physics, 2001, 166(2): 271-301.
[5] CHEN Z Q, HUANG X D, REN Y X, et al. Mechanism study of shock instability in Riemann-solver-based shock-capturing scheme[J]. AIAA Journal, 2018, 56(9): 3636-3651.
[6] CHEN Z Q, HUANG X D, REN Y X, et al. Mechanism-derived shock instability elimination for Riemann-solver-based shock-capturing scheme[J]. AIAA Journal, 2018, 56(9): 3652-3666.
[7] XIE W J, LI W, LI H, et al. On numerical instabilities of Godunov-type schemes for strong shocks[J]. Journal of Computational Physics, 2017, 350: 607-637.
[8] XIE W J. Towards an accurate and robust Roe-Type scheme for all Mach number flows[J]. Advances in Applied Mathematics and Mechanics, 2019, 11(1): 132-167.
[9] XIE W J, ZHANG R, LAI J Q, et al. An accurate and robust HLLC-type Riemann solver for the compressible Euler system at various Mach numbers[J]. International Journal for Numerical Methods in Fluids, 2019, 89(10): 430-463.
[10] FLEISCHMANN N, ADAMI S, HU X Y, et al. A low dissipation method to cure the grid-aligned shock instability[J]. Journal of Computational Physics, 2020, 401: 109004.
[11] GUO S L, TAO W Q. A robustness-enhanced method for Riemann solver[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120757.
[12] SIMON S, MANDAL J C. A simple cure for numerical shock instability in the HLLC Riemann solver[J]. Journal of Computational Physics, 2019, 378: 477-496.
[13] ZHANG F, LIU J, CHEN B S, et al. A robust low-dissipation AUSM-family scheme for numerical shock stability on unstructured grids[J]. International Journal for Numerical Methods in Fluids, 2017, 84(3): 135-151.
[14] CHEN S S, CAI F J, XIANG X H, et al. A low-diffusion robust flux splitting scheme towards wide-ranging Mach number flows[J]. Chinese Journal of Aeronautics, 2021, 34(5): 628-641.
[15] CHEN S S, YAN C, ZHONG K, et al. A novel flux splitting scheme with robustness and low dissipation for hypersonic heating prediction[J]. International Journal of Heat and Mass Transfer, 2018, 127: 126-137.
[16] RODIONOV A V. Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon[J]. Journal of Computational Physics, 2017, 345: 308-329.
[17] RODIONOV A V. Artificial viscosity to cure the shock instability in high-order Godunov-type schemes[J]. Computers & Fluids, 2019, 190: 77-97.
[18] SHIMA E J, KITAMURA K. Parameter-free simple low-dissipation AUSM-family scheme for all speeds[J]. AIAA Journal, 2011, 49(8): 1693-1709.
[19] TORO E F. Riemann solvers and numerical methods for fluid dynamics: A practical introduction[M].3rd ed. Dordrecht: Springer Science & Business Media, 2009: 277-278, 315-345.
[20] 谢文佳. 激波捕捉方法的数值稳定性研究[D].长沙: 国防科技大学, 2019: 18-24. XIE W J. On numerical instabilities of shock-capturing methods[D].Changsha: National University of Defense Technology, 2019: 18-24 (in Chinese).
[21] DUMBSER M, MOSCHETTA J M, GRESSIER J. A matrix stability analysis of the carbuncle phenomenon[J]. Journal of Computational Physics, 2004, 197(2): 647-670.
[22] SHEN Z J, YAN W, YUAN G W. A stability analysis of hybrid schemes to cure shock instability[J]. Communications in Computational Physics, 2014, 15(5): 1320-1342.
[23] KITAMURA K, NAKAMURA Y, SHIMA E J. An evaluation of Euler fluxes II: Hypersonic surface heating computation[C]//38th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2008: 4275.
[24] MENART J A, HENDERSON S J. Study of the issues of computational aerothermodynamics using a Riemann solver: AFRL Report 2008-3133[R].Dayton: Defense Technical Information Center, 2008.
文章导航

/