基于扩维QLEKF的脉冲星/星间定向组合导航
收稿日期: 2021-08-16
修回日期: 2021-08-23
录用日期: 2021-09-25
网络出版日期: 2021-10-12
基金资助
民用航天技术预先研究项目(D020403)
Pulsar/inter-satellite LOS integrated navigation based on augmented QLEKF
Received date: 2021-08-16
Revised date: 2021-08-23
Accepted date: 2021-09-25
Online published: 2021-10-12
Supported by
Civil Aerospace Advance Research Project(D020403)
面向星座卫星高精度自主导航技术需求,设计了一种融合X射线脉冲星和星间定向观测信息的组合导航方法。通过X射线探测器获得脉冲到达时间观测量,照相观测星相机和星间链路设备获得星间相对位置矢量观测量,设计导航滤波器对观测量进行处理,估计参与导航的星座卫星的运动状态。针对地球星历误差影响组合导航性能的问题,将地球相对于太阳系质心的位置扩充为状态向量,设计了扩维扩展卡尔曼滤波器,利用敏感器观测量对导航所需的地球位置矢量进行实时估计,从而削弱地球星历误差的影响。进而,针对滤波器参数选取影响状态估计精度的问题,设计了一种Q学习扩展卡尔曼滤波器(QLEKF),主要思路是利用Q学习方法的决策能力,自适应地选择适当的滤波器参数以改善估计性能。数学仿真结果表明,所提方法能够有效减小地球星历误差对星座自主导航的影响,取得优于传统滤波算法的定位精度。
熊凯 , 魏春岭 , 李连升 , 周鹏 . 基于扩维QLEKF的脉冲星/星间定向组合导航[J]. 航空学报, 2023 , 44(3) : 526232 -526232 . DOI: 10.7527/S1000-6893.2021.26232
An integrated navigation method based on X-ray pulsars and inter-satellite measurements is designed for constellation satellite autonomous navigation with high-accuracy requirement. The X-ray detector is used to obtain the pulse arrival time. The relative position vector measurement between satellites is obtained from star cameras and inter-satellite links. A navigation filter is designed to process the obtained data, so as to estimate the kinematic states of the satellites that participate in the navigation. To cope with the problem that the ephemeris error of Earth affects the integrated navigation performance, the position vector of Earth relative to the solar system barycenter is augmented as a state vector, and an augmented extended Kalman filter is designed. The position vector of Earth for navigation is estimated in real time, such that the effect of the ephemeris error of Earth is suppressed. In addition, to cope with the problem that state estimation accuracy is affected by the choice of filtering parameters, a Q-Learning Extended Kalman Filter (QLEKF) is designed. The key idea is to select the appropriate filtering parameters adaptively with the Q-learning method, which has the decision-making ability. It is illustrated via numerical simulations that effect of the ephemeris error of Earth on the autonomous navigation performance of constellation is decreased efficiently using the proposed algorithm. The QLEKF is superior to traditional filtering algorithms in positioning accuracy.
1 | ZHANG H, JIAO R, XU L P. Orbit determination using pulsar timing data and orientation vector[J]. Journal of Navigation, 2019, 72(1): 155-175. |
2 | LIN H Y, XU B, LIU J X. Designing observation scheme in X-ray pulsar-based navigation with probability ellipsoid[J]. Advances in Space Research, 2019, 64(9): 1639-1651. |
3 | 刘劲, 韩雪侠, 宁晓琳, 等. 基于EMD-CS的脉冲星周期超快速估计[J]. 航空学报, 2020, 41(8): 623486. |
LIU J, HAN X X, NING X L, et al. Ultra-fast estimation of pulsar period based on EMD-CS[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 623486 (in Chinese). | |
4 | SU J Y, FANG H Y, BAO W M, et al. Fast simulation of X-ray pulsar signals at a spacecraft[J]. Acta Astronautica, 2020, 166: 93-103. |
5 | WINTERNITZ L B, HASSOUNEH M A, MITCHELL J W, et al. SEXTANT X-ray pulsar navigation demonstration: Additional on-orbit results[C]∥ 2018 SpaceOps Conference. Reston: AIAA, 2018: 2538. |
6 | 帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报, 2019, 27(3): 281-287. |
SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology, 2019, 27(3): 281-287 (in Chinese). | |
7 | YU W H. Characterization of X-ray pulsar navigation for tracking closed earth orbits[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(10): 2310-2313. |
8 | HE Y B, MEI Z W, WANG L, et al. The X-ray pulsar navigation technology and recent progresses in deep space exploration[C]∥ Second Target Recognition and Artificial Intelligence Summit Forum. Bellingham: International Society for Optics and Photonics, 2020: 11427. |
9 | WANG Y D, ZHENG W, ZHANG D P. X-ray pulsar/starlight Doppler deeply-integrated navigation method[J]. Journal of Navigation, 2017, 70(4): 829-846. |
10 | XU Q, WANG H L, FENG L, et al. A novel X-ray pulsar integrated navigation method for ballistic aircraft[J]. Optik, 2018, 175: 28-38. |
11 | SUN J, GUO P B, WU T, et al. Pulsar/star tracker/INS integrated navigation method based on asynchronous observation model[J]. Journal of Aerospace Engineering, 2019, 32(5): 04019075. |
12 | SU Q Y, HUANG Y. Observability analysis and navigation algorithm for distributed satellites system using relative range measurements[J]. Journal of Systems Science and Complexity, 2018, 31(5): 1206-1226. |
13 | XIONG K, WEI C L, ZHANG H Y. Parallel model adaptive Kalman filtering for autonomous navigation with line-of-sight measurements[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233: 4017-4031. |
14 | LI Y, LI X, WU P, et al. Integrating satellite-to-satellite tracking with star tracker navigation for satellite constellation at earth-moon L2 point [J]. Journal of Chinese Inertial Technology, 2020, 28(1): 61-66. |
15 | WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation system with the errors in the planetary ephemerides for Earth-orbiting satellite[J]. Advances in Space Research, 2013, 51(12): 2394-2404. |
16 | WANG S, CUI P Y, GAO A, et al. Absolute navigation for Mars final approach using relative measurements of X-ray pulsars and Mars orbiter[J]. Acta Astronautica, 2017, 138: 68-78. |
17 | GUI M Z, NING X L, MA X, et al. A novel celestial aided time-differenced pulsar navigation method against ephemeris error of Jupiter for Jupiter exploration[J]. IEEE Sensors Journal, 2019, 19(3): 1127-1134. |
18 | 李晓宇, 姜宇, 金晶, 等. 脉冲星导航系统的星历表误差RKF校正算法[J]. 宇航学报, 2017, 38(1): 26-33. |
LI X Y, JIANG Y, JIN J, et al. RKF method for pulsar based navigation with emphasis error correction[J]. Journal of Astronautics, 2017, 38(1): 26-33 (in Chinese). | |
19 | 房建成, 宁晓琳, 马辛, 等. 深空探测器自主天文导航技术综述[J]. 飞控与探测, 2018, 1(1): 1-15. |
FANG J C, NING X L, MA X, et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control and Detection, 2018, 1(1): 1-15 (in Chinese). | |
20 | PSIAKI M L. Absolute orbit and gravity determination using relative position measurements between two satellites[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5): 1285-1297. |
21 | RISTIC B, FARINA A, BENVENUTI D, et al. Performance bounds and comparison of nonlinear filters for tracking a ballistic object on re-entry[J]. IEE Proceedings—Radar, Sonar and Navigation, 2003, 150(2): 65. |
22 | LEI M, VAN WYK B J, QI Y. Online estimation of the approximate posterior Cramer-Rao lower bound for discrete-time nonlinear filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 37-57. |
23 | 秦永元, 张洪钺,汪叔华. 卡尔曼滤波与组合导航原理[M]. 西安: 西北工业大学出版社, 1998. |
QIN Y Y, ZHANG H Y, WANG S H. Kalman filter and principle of integrated navigation[M]. Xi’an: Northwestern Polytechnical University Press, 1998 (in Chinese). | |
24 | WEI Q L, LEWIS F L, SUN Q Y, et al. Discrete-time deterministic Q-learning: A novel convergence analysis[J]. IEEE Transactions on Cybernetics, 2017, 47(5): 1224-1237. |
25 | LUO B, WU H N, HUANG T W. Optimal output regulation for model-free quanser helicopter with multistep Q-learning[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4953-4961. |
26 | LOW E S, ONG P, CHEAH K C. Solving the optimal path planning of a mobile robot using improved Q-learning[J]. Robotics and Autonomous Systems, 2019, 115: 143-161. |
27 | XIONG K, WEI C L, ZHANG H Y. Q?learning for noise covariance adaptation in extended Kalman filter[J]. Asian Journal of Control, 2021, 23(4): 1803-1816. |
28 | SHEIKH S I, PINES D J, RAY P S, et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 49-63. |
29 | BUSSE F D, HOW J P, SIMPSON J. Demonstration of adaptive extended Kalman filter for low-earth-orbit formation estimation using CDGPS[J]. Navigation, 2003, 50(2): 79-93. |
30 | HANLON P D, MAYBECK P S. Multiple-model adaptive estimation using a residual correlation Kalman filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(2): 393-406. |
/
〈 |
|
〉 |