结冰模拟软件AERO-ICE中的关键数值方法

  • 李浩然 ,
  • 段玉宇 ,
  • 张宇飞 ,
  • 陈海昕
展开
  • 清华大学 航天航空学院, 北京 100084

收稿日期: 2021-09-01

  修回日期: 2021-09-14

  网络出版日期: 2021-10-09

基金资助

国家自然科学基金(11872230,91852108);航空科学基金(2020Z006058002);国家重大项目(GJXM92579)

Numerical method of ice-accretion software AERO-ICE

  • LI Haoran ,
  • DUAN Yuyu ,
  • ZHANG Yufei ,
  • CHEN Haixin
Expand
  • School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Received date: 2021-09-01

  Revised date: 2021-09-14

  Online published: 2021-10-09

Supported by

National Natural Science Foundation of China (11872230, 91852108); Aeronautical Science Foundation of China (2020Z006058002); National Key Project (GJXM92579)

摘要

自然积冰对于航空飞行安全造成重大隐患,飞机在穿越富含过冷水汽的云层时冰形将按一定的物理规律积聚生长。介绍了一款三维结冰数值模拟软件AERO-ICE,该软件由网格自动生成、空气流场RANS计算、水滴场欧拉方法计算、结冰热力学分析四个模块组成。在空气流场计算方面,采用SPF k-v2-ω湍流模型,该模型引入湍流非平衡特性修正,预测的带冰翼型最大升力系数和失速攻角相对SA和SST模型有显著的提高。水滴场欧拉方程由于源项较大,迭代求解时容易发散,AERO-ICE软件采用流场光顺、二阶MUSCL空间离散以及LU-SGS隐式时间推进方法改善了数值稳定性。在结冰热力学分析模块,AERO-ICE软件同时具有Messinger与Myers模型,并将Messinger模型预估的壁面温度作为Myers模型的边界条件,从而解决了Myers模型温度设置的经验性问题。AERO-ICE软件支持多块网格、多重网格加速技术与大规模并行计算,其冰形计算结果得到了初步的验证。

本文引用格式

李浩然 , 段玉宇 , 张宇飞 , 陈海昕 . 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021 , 42(S1) : 726371 -726371 . DOI: 10.7527/S1000-6893.2021.26371

Abstract

Natural ice-accretion poses threat to aviation flight safety. When an aircraft passes through the clouds containing supercooled water droplet, ice could be accumulated according to certain physical laws. This paper introduces a three-dimensional icing simulation software AERO-ICE. The software is composed of four modules: automatic grid generation, RANS calculation of air flow field, Euler calculation of water drop field and thermodynamic analysis of icing. In the calculation of the air flow field, the SPF k-v2-ω turbulence model is adopted, which introduces the fixing term of non-equilibrium characteristics of turbulence. The model is developed to improve the prediction of non-streamlined large separation flow. Because of the large source term, the solving process of the Euler equation of the water field can be hard to converge. AERO-ICE software uses flow field smoothing, second-order MUSCL space discretization and LU-SGS implicit time marching method to improve numerical stability. In the icing thermodynamic analysis module, the AERO-ICE software has both Messinger and Myers models. The wall temperature predicted by the Messinger model is used as the boundary condition of the Myers model. This method solves the empirical problem of temperature setting in the Myers model. AERO-ICE software supports multi-block gird, multi-grid acceleration technology and large-scale parallel computing. The calculation of the ice-accretion has been preliminarily verified.

参考文献

[1] 中国民用航空规章 第25部 运输类飞机适航标准CCAR-25-R4, 2011[EB/OL].[2011-12-07]. https://www.docin.com/p-1963805781.html. CIVIL AVIATION ADMINISTRATION OF CHINA 25 AIRWORTHINESS STANDARDS FOR TRANSPORT AIRCRAFT CCAR-25-R4, 2011[EB/OL].[2011-12-07]. https://www.docin.com/p-1963805781.html(in Chinese).
[2] LI H R, ZHANG Y F, CHEN H X. Optimization design of airfoils under atmospheric icing conditions for UAV[J]. Chinese Journal of Aeronautics.doi: 10.1016/j.cja.2021.04.031.
[3] 陈维建, 张大林. 飞机机翼结冰过程的数值模拟[J]. 航空动力学报, 2005, 20(6): 1010-1017. CHEN W J, ZHANG D L. Numerical simulation of ice accretion on airfoils[J]. Journal of Aerospace Power, 2005, 20(6): 1010-1017 (in Chinese).
[4] 易贤. 飞机积冰的数值计算与积冰试验相似准则研究[D].绵阳: 中国空气动力研究与发展中心, 2007. YI X. Numerical computation of aircraft icing and study on icing test scaling law[D].Mianyang: China Aerodynamics Research and Development Center, 2007 (in Chinese).
[5] 易贤, 朱国林. 考虑传质传热效应的翼型积冰计算[J]. 空气动力学学报, 2004, 22(4): 490-493. YI X, ZHU G L. Computation of glaze ice accretion on airfoil[J]. Acta Aerodynamica Sinica, 2004, 22(4): 490-493 (in Chinese).
[6] 桑为民, 李凤蔚, 施永毅. 结冰对翼型和多段翼型绕流及气动特性影响研究[J]. 西北工业大学学报, 2005, 23(6): 729-732. SANG W M, LI F W, SHI Y Y. Icing research on airfoil and multi-element airfoil based on flow field and aerodynamic performance[J]. Journal of Northwestern Polytechnical University, 2005, 23(6): 729-732 (in Chinese).
[7] 卜雪琴, 林贵平. 基于CFD的水收集系数及防冰表面温度预测[J]. 北京航空航天大学学报, 2007, 33(10): 1182-1185. BU X Q, LIN G P. Predictions of collection efficiency and anti-icing surface temperature[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1182-1185 (in Chinese).
[8] 杨倩, 常士楠, 袁修干. 水滴撞击特性的数值计算方法研究[J]. 航空学报, 2002, 23(2): 173-176. YANG Q, CHANG S N, YUAN X G. Study on numerical method for determining the droplet trajectories[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(2): 173-176 (in Chinese).
[9] 孙志国. 飞机结冰数值计算与冰风洞部件设计研究[D].南京: 南京航空航天大学, 2012. SUN Z G. Research on numerical simulation of ice accertion and design for icing research tunnel parts[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
[10] 陶文铨. 数值传热学[M].2版. 西安: 西安交通大学出版社, 2001: 442. TAO W Q. Numerical heat transfer[M].2nd edition. Xi'an: Xi'an Jiaotong University Press, 2001: 442 (in Chinese).
[11] BRAGG M B, BROEREN A P, BLUMENTHAL L A. Iced-airfoil aerodynamics[J]. Progress in Aerospace Sciences, 2005, 41(5): 323-362.
[12] LOPEZ M, WALTERS D K. Prediction of transitional and fully turbulent flow using an alternative to the laminar kinetic energy approach[J]. Journal of Turbulence, 2016, 17(3): 253-273.
[13] RUMSEY C. Exploring a method for improving turbulent separated-flow predictions with k-ω models[R]. Washington, D.C.: NASA, 2009.
[14] LI H R, ZHANG Y F, CHEN H X. Aerodynamic prediction of iced airfoils based on modified three-equation turbulence model[J]. AIAA Journal, 2020, 58(9): 3863-3876.
[15] LI H R, ZHANG Y F, CHEN H X. Numerical simulation of iced wing using separating shear layer fixed turbulence models[J]. AIAA Journal, 2021, 59(9): 3667-3681.
[16] BRADSHAW P, FERRISS D H, ATWELL N P. Calculation of boundary-layer development using the turbulent energy equation[J]. Journal of Fluid Mechanics, 1967, 28(3): 593.
[17] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[18] LI H R, ZHANG Y F, CHEN H X. Optimization of supercritical airfoil considering the ice-accretion effects[J]. AIAA Journal, 2019, 57(11): 4650-4669.
[19] MELE B, TOGNACCINI R, CATALANO P. Performance assessment of a transonic wing-body configuration with riblets installed[J]. Journal of Aircraft, 2015, 53(1): 129-140.
[20] WRIGHT W B. User’s manual for LEWICE 3.2: NACA CR-2008-214255[R].Boston:NACA, 2008.
[21] MESSINGER B L. Equilibrium temperature of an unheated icing surface as a function of air speed[J]. Journal of the Aeronautical Sciences, 1953, 20(1): 29-42.
[22] MYERS T G, CHARPIN J P F. A mathematical model for atmospheric ice accretion and water flow on a cold surface[J]. International Journal of Heat and Mass Transfer, 2004, 47(25): 5483-5500.
[23] MYERS T G. Extension to the messinger model for aircraft icing[J]. AIAA Journal, 2001, 39(2): 211-218.
[24] CAO Y H, HOU S. Extension to the myers model for calculation of three-dimensional glaze icing[J]. Journal of Aircraft, 2015, 53(1): 106-116.
[25] WRIGHT W. A summary of validation results for LEWICE 2.0[C]//37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999.
文章导航

/