高温化学非平衡湍流边界层脉动量象限分析

  • 刘朋欣 ,
  • 袁先旭 ,
  • 梁飞 ,
  • 李辰 ,
  • 孙东
展开
  • 1. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000

收稿日期: 2021-09-01

  修回日期: 2021-09-13

  网络出版日期: 2021-10-09

基金资助

国家重点研发计划(2019YFA0405201);国家自然科学基金(11902345);国家数值风洞工程

Quadrant decomposition analysis of fluctuations in high-temperature turbulent boundary layer with chemical non-equilibrium

  • LIU Pengxin ,
  • YUAN Xianxu ,
  • LIANG Fei ,
  • LI Chen ,
  • SUN Dong
Expand
  • 1. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-09-01

  Revised date: 2021-09-13

  Online published: 2021-10-09

Supported by

National Key Research and Development Program of China (2019YFA0405201); National Natural Science Foundation of China (11902345); National Numerical Windtunnel Project

摘要

高超声速飞行器在较低空域以极高马赫数飞行时,表面会同时存在湍流与化学非平衡流动,但目前针对此类高温化学非平衡湍流边界层流动特性的研究工作还比较有限,对不同湍流特征的主导流动机制的认识还有待于进一步深入。选取高超声速楔形体头部斜激波后的流动状态,设置3种不同的壁面温度,通过直接数值模拟对比了不同壁温条件下的边界层参数分布特性,并采用象限分解技术分析了边界层不同象限流动事件对雷诺剪切应力、湍流热流、湍流质量扩散的贡献。结果显示:在整个边界层中上抛和下扫运动对雷诺剪切应力的贡献占优;冷壁效应会使得流向和法向湍流热流通量的主导流动事件在温度峰值两侧发生改变。O原子组分流向湍流组分扩散主要受到高质量分数流体慢速运动事件和低质量分数流体快速运动事件的影响,而法向湍流组分扩散则主要受到高质量分数流体向上运动事件和低质量分数流体向下运动事件的影响。

本文引用格式

刘朋欣 , 袁先旭 , 梁飞 , 李辰 , 孙东 . 高温化学非平衡湍流边界层脉动量象限分析[J]. 航空学报, 2021 , 42(S1) : 726338 -726338 . DOI: 10.7527/S1000-6893.2021.26338

Abstract

The surface of hypersonic vehicles will concurrently experience turbulence and chemical non-equilibrium flow during flight at a high Mach number and a low altitude. However, current research on the flow characteristics of such high-temperature turbulent boundary layers with chemical non-equilibrium is still limited, and understanding of the dominant flow mechanism of turbulence characteristics needs to be further deepened. Choosing the flow state after the leading shock of a cone, this study sets three different wall temperature to compare the distribution characteristics of boundary layer parameters through direct numerical simulation, and analyzes the contributions of different events to Reynolds shear stress, turbulent heat-flux, and turbulent mass diffusion using quadrant analysis. The results show that the contribution of ejections and sweeps to Reynolds shear stress is dominant in the entire boundary layer. The cold wall condition will cause change in the dominant events of both the streamwise and normalwise turbulent heat-flux on both sides of the temperature peak. The streamwise turbulent mass diffusion of O atom components is mainly affected by slow moving high-mass fraction motion and fast moving low-mass fraction motion, while that of the normalwise turbulent mass is dominated by upward moving high-mass fraction motion and inward moving low-mass fraction motion.

参考文献

[1] CANDLER G V. Rate effects in hypersonic flows[J]. Annual Review of Fluid Mechanics, 2019, 51: 379-402.
[2] URZAY J, DI RENZO M. Engineering aspects of hypersonic turbulent flows at suborbital enthalpies[C]//Annual Research Briefs. Center for Turbulence Research, 2020: 7-32.
[3] MOIN P, MAHESH K. Direct numerical simulation: A tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 539-578.
[4] PIROZZOLI S. Numerical methods for high-speed flows[J]. Annual Review of Fluid Mechanics, 2011, 43: 163-194.
[5] 李新亮. 高超声速湍流直接数值模拟技术[J]. 航空学报, 2015, 36(1): 147-158. LI X L. Direct numerical simulation techniques for hypersonic turbulent flows[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 147-158 (in Chinese).
[6] 孙东, 刘朋欣, 童福林. 展向振荡对激波/湍流边界层干扰的影响[J]. 航空学报, 2020, 41(12): 124054. SUN D, LIU P X, TONG F L. Effect of spanwise oscillation on interaction of shock wave and turbulent boundary layer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 124054 (in Chinese).
[7] 孙东, 刘朋欣, 沈鹏飞, 等. 马赫6柱-裙激波/边界层干扰直接模拟研究[J]. 航空学报, 2021, 42(6): 124681. SUN D, LIU P X, SHEN P F, et al. Direct numerical simulation of shock wave/turbulent boundary layer interaction in a hollow cylinder-flare configuration at Ma 6[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124681 (in Chinese).
[8] MARTÍN M P, CANDLER G V. DNS of reacting hypersonic turbulent boundary layers[C]//29th AIAA Fluid Dynamics Conference.Reston: AIAA, 1998.
[9] MARTÍN M P, CANDLER G. DNS of a Mach 4 boundary layer with chemical reactions[C]//38th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2000.
[10] MARTÍN M P, CANDLER G. Temperature fluctuation scaling in reacting boundary layers[C]//15th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2001.
[11] MARTÍN M P. Exploratory study of turbu-lence/chemistry interaction in hypersonic flows: AIAA-2003-4055[R].Reston: AIAA, 2003.
[12] DUAN L, MARTÍN M P. Effect of finite-rate chemical reactions on turbulence in hypersonic turbulence boundary layers[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
[13] DUAN L, MARTÍN M P. Study of turbulence-chemistry interaction in hypersonic turbulent boundary layers[C]//20th AIAA Computational Fluid Dynamics Conference. Reston: AIAA, 2011.
[14] DUAN L, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics, 2011, 684: 25-59.
[15] KIM P. Non-equilibrium effects on hypersonic turbulent boundary layers[D].Los Angeles: University of California, 2016.
[16] 刘朋欣, 袁先旭, 孙东, 等. 高温化学非平衡湍流边界层直接数值模拟[J/OL]. 航空学报, (2020-11-16)[2021-08-25].https://kns.cnki.net/kcms/detail/11.1929.V.20201113.1533.006.html. LIU P X, YUAN X X, SUN D, et al. DNS of high-temperature turbulent boundary layer with chemical nonequilibrium[J]. Acta Aeronautica et Astronautica Sinica, (2020-11-16)[2021-08-25].https://kns.cnki.net/kcms/detail/11.1929.V.20201113.1533.006.html (in Chinese).
[17] 刘朋欣, 李辰, 孙东, 等. 高温化学非平衡湍流边界层统计特性分析[J]. 空气动力学学报, (2021-03-02)[2021-08-25].https://kns.cnki.net/kcms/detail/51.1192.TK.20210301.1829.002.html. LIU P X, LI C, SUN D, et al. Statistical properties of high-temperature turbulent boundary layer including chemical nonequilibrium[J]. Acta Aerodynamica Sinica, (2021-03-02)[2021-08-25].https://kns.cnki.net/kcms/detail/51.1192.TK.20210301.1829.002.html (in Chinese).
[18] 吴正园, 莫凡, 高振勋, 等. 湍流边界层与高温气体效应耦合的直接数值模拟[J]. 空气动力学学报, 2020, 38(6): 1111-1119, 1128. WU Z Y, MO F, GAO Z X, et al. Direct numerical simulation of turbulent and high-temperature gas effect coupled flow[J]. Acta Aerodynamica Sinica, 2020, 38(6): 1111-1119, 1128 (in Chinese).
[19] DI RENZO M, URZAY J. Direct numerical simulation of a hypersonic transitional boundary layer at suborbital enthalpies[J]. Journal of Fluid Mechanics, 2021, 912: A29.
[20] VOLPIANI P S. Numerical strategy to perform direct numerical simulations of hypersonic shock/boundary-layer interaction in chemical nonequilibrium[J]. Shock Waves, 2021, 31(4): 361-378.
[21] LU S S, WILLMARTH W W. Measurements of the structure of the Reynolds stress in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 1973, 60(3): 481.
[22] TICHENOR N R, HUMBLE R A, BOWERSOX R D W. Response of a hypersonic turbulent boundary layer to favourable pressure gradients[J]. Journal of Fluid Mechanics, 2013, 722: 187-213.
[23] DELEUZE J, AUDIFFREN N, ELENA M. Quadrant analysis in a heated-wall supersonic boundary layer[J]. Physics of Fluids, 1994, 6(12): 4031-4041.
[24] WALLACE J M. Quadrant analysis in turbulence research: History and evolution[J]. Annual Review of Fluid Mechanics, 2016, 48(1): 131-158.
[25] CASTRO M, COSTA B, DON W S. High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 2011, 230(5): 1766-1792.
[26] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.
[27] GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K[EB/OL]. (1989-02-01)[2021-08-20]. https://ntrs.nasa.gov/citations/19890011822.
[28] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[29] ADLER M C, GONZALEZ D R, STACK C M, et al. Synthetic generation of equilibrium boundary layer turbulence from modeled statistics[J]. Computers & Fluids, 2018, 165: 127-143.
[30] DUAN L, BEEKMAN I, MARTÍN M P. Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature[J]. Journal of Fluid Mechanics, 2010, 655: 419-445.
[31] PIROZZOLI S, BERNARDINI M, GRASSO F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 613: 205-231.
[32] SUBBAREDDY P, CANDLER G. DNS of transition to turbulence in a hypersonic boundary layer[C]//41 st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011.
[33] SHARMA S, SHADLOO M S, HADJADJ A. Turbulent flow topology in supersonic boundary layer with wall heat transfer[J]. International Journal of Heat and Fluid Flow, 2019, 78: 108430.
[34] WALLACE J M, ECKELMANN H, BRODKEY R S. The wall region in turbulent shear flow[J]. Journal of Fluid Mechanics, 1972, 54(1): 39-48.
文章导航

/