论文

平角旋转机构约束的管射无人机二次折叠翼气动优化设计

  • 昌敏 ,
  • 孙杨 ,
  • 白俊强 ,
  • 孟晓轩
展开
  • 1. 西北工业大学 无人系统技术研究院, 西安 710072;
    2. 西北工业大学 航空学院, 西安 710072

收稿日期: 2021-09-07

  修回日期: 2021-09-26

  网络出版日期: 2021-10-09

基金资助

国家自然科学基金(11902320)

Aerodynamic design optimization of twice folding wing for tube-launched UAV constrained by flat-angle rotation mechanism

  • CHANG Min ,
  • SUN Yang ,
  • BAI Junqiang ,
  • MENG Xiaoxuan
Expand
  • 1. Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an 710072, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2021-09-07

  Revised date: 2021-09-26

  Online published: 2021-10-09

Supported by

National Natural Science Foundation of China (11902320)

摘要

机翼分段折叠的二次折叠翼可有效增加管射无人机的展弦比,提升管射无人机的巡航效能。但连接分段机翼的第二展开机构使得内、外机翼过渡段包络面相对厚度增大,气动性能降低,恶化了二次折叠翼的巡航性能。因此,建立二次折叠翼气动设计方法具有重要意义。开展了考虑第二展开机构几何约束的二次折叠翼气动优化设计研究。首先,采用自由变形(FFD)技术对二次折叠机翼进行参数化建模。其次,结合CFD求解器和遗传算法搭建了气动优化设计系统。最后,在具体优化设计工作中,将第二展开机构几何约束转化为关键剖面的绝对厚度约束,通过求解FFD控制点影响因子将绝对厚度约束转化为控制点设计变量变化范围约束。应用该优化系统对二次折叠机翼在升力系数0.68设计工况下开展考虑机构约束的优化设计工作,结果表明,在满足机构约束的前提下,机翼气动阻力减幅达到9.3%,有效地改善了二次折叠机翼气动特性。

本文引用格式

昌敏 , 孙杨 , 白俊强 , 孟晓轩 . 平角旋转机构约束的管射无人机二次折叠翼气动优化设计[J]. 航空学报, 2022 , 43(11) : 526331 -526331 . DOI: 10.7527/S1000-6893.2021.26331

Abstract

The twice folding wing can effectively increase the aspect ratio of the wing of tube-launched UAV and improve the cruising efficiency of the UAV. However, the flat-angle rotation deployment mechanism increases the thickness of the profile between the inner and outer wings, reducing the aerodynamic performance and worsening the cruise performance of the twice folding wing. Therefore, it is of great significance to establish the aerodynamic design method for the twice folding wing. In this paper, an aerodynamic optimization design for the twice folding wing is developed considering the geometric constraints of the second deployment mechanism. Firstly, the Free Form Deformation (FFD) technique is used to parameterize the twice folding wing. Then, combined with CFD solver and Genetic Algorithm, an aerodynamic optimization design system is developed. Finally, the absolute thickness constraint is transformed into the constraint of the variation range of the design variables for the FFD control points by solving the influence coefficient. The optimization design system is used to the design optimization of the twice folding wing under design conditions lift coeffiaient 0.68 considering constraints of mechanism. The result shows that the aerodynamic drag coefficient of the twice folding wing decreases by 9.3%, satisfying the constraint of the deployment mechanism. The developed optimization design system can effectively improve the aerodynamic characteristics of the twice folding wing.

参考文献

[1] OLSON E C, SELBERG B P. Experimental determination of improved aerodynamic characteristics utilizing biplane wing configurations[J]. Journal of Aircraft, 1976, 13(4):256-261.
[2] WOLKOVITCH J. Subsonic VSTOL aircraft configurations with tandem wings[J]. Journal of Aircraft, 1979, 16(9):605-611.
[3] RHODES M D, SELBERG B P. Benefits of dual wings over single wings for high-performance business airplanes[J]. Journal of Aircraft, 1984, 21(2):116-127.
[4] ROSID N H, IRSYAD LUKMAN E, AHMAD FADLILLAH M, et al. Aerodynamic characteristics of tube-launched tandem wing unmanned aerial vehicle[J]. Journal of Physics:Conference Series, 2018, 1005:012015.
[5] ZHANG G Q, YU S C M. Unsteady aerodynamics of a morphing tandem-wing unmanned aerial vehicle[J]. Journal of Aircraft, 2012, 49(5):1315-1323.
[6] YUE T, WANG L X, AI J Q. Flight performance characteristics of a tailless folding wing morphing aircraft:AIAA-2013-0623[R]. Reston:AIAA, 2013.
[7] SEIGLER T M, NEAL D A. Analysis of transition stability for morphing aircraft[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(6):1947-1954.
[8] GAO L, JIN H Z, ZHAO J, et al. Flight dynamics modeling and control of a novel catapult launched tandem-wing micro aerial vehicle with variable sweep[J]. IEEE Access, 6:42294-42308.
[9] ZHU Z, GUO H W, MA J J. Aerodynamic layout optimization design of a barrel-launched UAV wing considering control capability of multiple control surfaces[J]. Aerospace Science and Technology, 2019, 93:105297.
[10] 李文娟. 二次折叠翼面展开机构设计及工作可靠性仿真研究[D]. 杭州:浙江理工大学, 2016:7-9. LI W J. Design and working reliability simulation research on deployable mechanism of twice folding wing[D]. Hangzhou:Zhejiang Sci-Tech University, 2016:7-9(in Chinese).
[11] 昌敏, 孟晓轩, 陈娇娇, 等. 筒式发射的折叠翼无人机:CN209274879U[P]. 2019-08-20. CHANG M, MENG XX, CHEN J J, et al. Folding-wing unmanned aerial vehicle for barrel-type launching:CN209274879U[P]. 2019-08-20(in Chinese).
[12] SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York:ACM, 1986:151-160.
[13] 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安:西北工业大学, 2016:49-53. CHEN S. Gradient based aerodynamic shape optimization design and applications[D]. Xi'an:Northwestern Polytechnical University, 2016:49-53(in Chinese).
[14] LAMOUSIN H J, WAGGENSPACK N N. NURBS-based free-form deformations[J]. IEEE Computer Graphics and Applications, 1994, 14(6):59-65.
[15] 王丹, 白俊强, 黄江涛. FFD方法在气动优化设计中的应用[J]. 中国科学:物理学力学天文学, 2014, 44(3):267-277. WANG D, BAI J Q, HUANG J T. The application of FFD method in aerodynamic optimization design[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2014, 44(3):267-277(in Chinese).
[16] SHEN Y, HUANG W, YAN L, et al. Constraint-based parameterization using FFD and multi-objective design optimization of a hypersonic vehicle[J]. Aerospace Science and Technology, 2020, 100:105788.
[17] 黄江涛, 高正红, 白俊强, 等. 基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J]. 航空学报, 2013, 34(1):37-45. HUANG J T, GAO Z H, BAI J Q, et al. Study of robust winglet design based on arbitrary space shape FFD technique[J]. ActaAeronautica et Astronautica Sinica, 2013, 34(1):37-45(in Chinese).
[18] 张伟伟, 高传强, 叶正寅. 气动弹性计算中网格变形方法研究进展[J]. 航空学报, 2014, 35(2):303-319. ZHANG W W, GAO C Q, YE Z Y. Research progress on mesh deformation method in computational aeroelasticity[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):303-319(in Chinese).
[19] 唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术[J]. 航空学报, 2015, 36(5):1480-1490. TANG J, DENG Y Q, MA M S, et al. Parameterization and grid deformationtechniques for flying-wing aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1480-1490(in Chinese).
[20] 王荣, 白鹏. 基于FFD与网格重构的飞翼无人机外形优化设计[J]. 航空科学技术, 2018, 29(10):43-47. WANG R, BAI P. Aerodynamic design optimization for a flying-wing UAV based on FFD and grid reconstruction[J]. Aeronautical Science & Technology, 2018, 29(10):43-47(in Chinese).
[21] Hounjet M H L, Meijer J J. Evaluation of elastomechanical and aerodynamic data transfer methods for non-planar configurations in computational aeroelastic analysis[M]. Amsterdan:National Aerospace Laboratory NLR, 1995.
[22] 张增海, 谢军龙. 低雷诺数翼型的气动外形优化设计[J]. 能源与节能, 2020(3):50-52, 59. ZHANG Z H, XIEJ L. Aerodynamic shape optimization design of low Reynolds number airfoil[J]. Energy and Energy Conservation, 2020(3):50-52, 59(in Chinese).
[23] 李润泽, 张宇飞, 陈海昕. 超临界机翼多目标气动优化设计的策略与方法[J]. 航空学报, 2020, 41(5):623409. LI R Z, ZHANG Y F, CHEN H X. Strategies and methods for multi-objective aerodynamic optimization design for supercritical wings[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5):623409(in Chinese).
[24] 李霓, 布树辉, 尚柏林, 等. 飞行器智能设计愿景与关键问题[J]. 航空学报, 2021, 42(4):524752. LI N, BU S H, SHANG B L,et al. Aircraft intelligent design:visions and key technologies[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524752(in Chinese).
[25] 童歆, 羌晓青, 虞培祥, 等. 基于曲率分布控制的叶型前缘设计方法[J]. 航空学报, 2021, 42(7):124712. TONG X, QIANG X Q, YU P X,et al. Leading edge design method based on curvature distribution control[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7):124712(in Chinese).
[26] HOUCK C R, JOINES J A, KAY M G. A genetic algorithm for function optimization:A MATLAB implementation[J]. Ncsu-ie tr, 1995, 95(09):1-10.
[27] 郭小良, 裴锦华, 杨忠清, 等. 无人机折叠机翼展开运动特性研究[J]. 南京航空航天大学学报, 2006, 38(4):438-441. GUO X L, PEI J H, YANG Z Q, et al. Movementcharacteristic of UAV folding wings[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(4):438-441(in Chinese).
文章导航

/