流体力学与飞行力学

嫦娥五号轻量化泵驱单相流体回路热总线设计及实现

  • 宁献文 ,
  • 徐侃 ,
  • 王玉莹 ,
  • 蒋凡
展开
  • 北京空间飞行器总体设计部, 空间热控技术北京市重点实验室, 北京 100094

收稿日期: 2021-08-30

  修回日期: 2021-09-05

  网络出版日期: 2021-10-09

基金资助

国家自然科学基金(11472040)

Chang'e-5 complex of lander and ascent vehicle lightweight pumped fluid loop thermal bus: Design and implementation

  • NING Xianwen ,
  • XU Kan ,
  • WANG Yuying ,
  • JIANG Fan
Expand
  • Beijing Key Laboratory of Space Thermal Control Technology, Beijing Institute of Spacecraft System Engineering (ISSE), Beijing 100094, China

Received date: 2021-08-30

  Revised date: 2021-09-05

  Online published: 2021-10-09

Supported by

National Natural Science Foundation of China(11472040)

摘要

针对嫦娥五号着陆上升组合体月面无人自动采样任务中面临的热控难题,提出一种轻量化泵驱单相流体回路热总线及设计方法,通过热总线将结构板式固定辐射散热面、消耗型散热装置高温水升华器构建为一套组合式热沉,实现了探测器组合体能量的一体化调度管理与在轨分离重构,热总线系统干重15 kg,占热控系统重量的比例在20%以下。在轨飞行结果表明:轻量化泵驱单相流体回路热总线工作正常,管路沿程温差小于7℃,热排散能力达30 W/kg。上升器月面起飞前热总线分离重构过程中工质排放压力变化曲线与地面实验结果一致。流体回路热总线在轨各项性能指标均符合设计预期,验证了轻量化泵驱单相流体回路热总线技术的合理性与可行性,亦可为其他类型航天器热控设计提供参考。

本文引用格式

宁献文 , 徐侃 , 王玉莹 , 蒋凡 . 嫦娥五号轻量化泵驱单相流体回路热总线设计及实现[J]. 航空学报, 2022 , 43(12) : 126292 -126292 . DOI: 10.7527/S1000-6893.2021.26292

Abstract

In view of the thermal control problem faced in lunar robotic sampling mission of Chang'e-5 complex of lander and ascent vehicle, a lightweight pumped fluid loop thermal bus and design method were proposed. Through the thermal bus, the "structural plate fixed radiator + high temperature water sublimator" was jointly constructed as a set of combined heat sink to realize the integrated thermal management of the probe energy and the separation and reconstruction. The dry weight of pumped fluid loop is 15 kg, accounting for less than 20% of the weight of the thermal system. The on-orbit flight data show that the lightweight pumped fluid loop thermal bus works normally, the maximum temperature difference of thermal bus is no more than 7℃, and the heat dissipation capacity is 30 W/kg. The pressure variation curve of working medium venting in the process of the thermal bus separation and reconstruction before ascent vehicle take-off is consistent with the ground experimental results. All performance indexes of the pumped fluid loop on-orbit meet the design expectations, which verify the rationality and feasibility of the lightweight pumped fluid loop thermal bus technology, and can also provide some reference for the thermal control design of other types of spacecraft.

参考文献

[1] 杨孟飞, 张高, 张伍, 等. 月面无人自动采样返回任务技术设计与实现[J]. 中国科学:技术科学, 2021, 51(7):738-752. YANG M F, ZHANG G, ZHANG W, et al. Technical design and implementation of Chang'e-5 robotic sample return mission on lunar surface[J]. Scientia Sinica (Technologica), 2021, 51(7):738-752(in Chinese).
[2] 宁献文, 李劲东, 王玉莹, 等. 中国航天器新型热控系统构建进展评述[J]. 航空学报, 2019, 40(7):022874. NING X W, LI J D, WANG Y Y, et al. Review on construction of new spacecraft thermal control system in China[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):022874(in Chinese).
[3] 苗建印, 钟奇, 赵啟伟, 等. 航天器热控制技术[M]. 北京:北京理工大学出版社, 2018:160-179. MIAO J Y, ZHONG Q, ZHAO Q W, et al. Spacecraft thermal control technology[M]. Beijing:Beijing Insititute of Technology Press, 2018:160-179(in Chinese).
[4] GILMORE D G. Spacecraft thermal control handbook[M]. 2nd ed. California:The Aerospace Press, 2002:405-472.
[5] 宁献文, 王玉莹, 宋馨, 等. 卫星平台模块化柔性热控体系结构[J]. 航天器工程, 2012, 21(2):50-55. NING X W, WANG Y Y, SONG X, et al. Modular flexible thermal control architecture for satellite bus[J]. Spacecraft Engineering, 2012, 21(2):50-55(in Chinese).
[6] 宁献文, 张加迅. 基于泵变频调速的航天器热控制技术[J]. 中国空间科学技术, 2011, 31(2):47-52. NING X W, ZHANG J X. Spacecraft thermal control technology based on variable frequency pump[J]. Chinese Space Science and Technology, 2011, 31(2):47-52(in Chinese).
[7] NING X W, WANG Y Y, ZHANG J X, et al. An equivalent ground thermal test method for single-phase fluid loop space radiator[J]. Chinese Journal of Aeronautics, 2015, 28(1):86-92.
[8] 范含林. 载人航天器热管理技术发展综述[J]. 航天器工程, 2007, 16(1):28-32. FAN H L. Manned spacecraft thermal management technologies development overview[J]. Spacecraft Engineering, 2007, 16(1):28-32(in Chinese).
[9] 黄家荣, 范宇峰, 范含林. 载人运输飞船流体回路试验研究[J]. 中国空间科学技术, 2010, 30(1):65-71. HUANG J R, FAN Y F, FAN H L. Experiment study of fluid loop system on manned spaceship[J]. Chinese Space Science and Technology, 2010, 30(1):65-71(in Chinese).
[10] MATTHIJSSEN R, VAN PUT P, VAN DER LIST M C A M. Development of an advanced mechanically pumped fluid loop for thermal control of large future telecommunication platforms[R]. De Wijper:Bradford Engineering,2005.
[11] BIRUR G C. JPL advanced thermal control technology roadmap[R]. Pasadena:Jet Propulsion Laboratory of California Institute of Technology, 2005.
[12] SHEN F, DROLEN B, PRABHU J, et al. Long life mechanical fluid pump for space applications[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005.
[13] BIRUR G, BHANDARI P, BIRUR G, et al. Mars Pathfinder active thermal control system-Ground and flight performance of a mechanically pumped cooling loop[C]//32nd Thermophysics Conference. Reston:AIAA, 1997.
[14] BHANDARI P, DUDIK B, BIRUR G, et al. Mars science laboratory launch pad thermal control[C]//41 st International Conference on Environmental Systems. Reston:AIAA, 2011.
[15] BHANDARI P, DUDIK B, BIRUR G, et al. Design of accumulators and liquid/gas charging of single phase mechanically pumped fluid loop heat rejection systems[C]//42nd International Conference on Environmental Systems. Reston:AIAA, 2012.
[16] PARIS A, KELLY F, KEMPENAAR J, et al. In-flight performance of the Mars science laboratory spacecraft cruise phase thermal control systems[C]//42nd International Conference on Environmental Systems. Reston:AIAA, 2012.
[17] BIRUR G, BHANDARI P, BAME D, et al. From concept to flight:An active fluid loop based thermal control system for Mars science laboratory rover[C]//42nd International Conference on Environmental Systems. Reston:AIAA, 2012.
[18] BHANDARI P, BIRUR G C, BAME D, et al. Performance of the mechanically pumped fluid loop rover heat rejection system used for thermal control of the Mars science laboratory curiosity rover on the surface of Mars[C]//43rd International Conference on Environmental Systems. Reston:AIAA, 2013.
[19] 刘庆志, 任红艳, 赵欣. 实践十号返回式卫星热设计改进及效果[C]//第十三届空间热物理会议论文集. 北京:中国宇航学会飞行器总体专业委员会, 2017:55-58. LIU Q Z, REN H Y, ZHAO X. Improvement and Effect of Thermal Design for PRACTICE No.10 Returning Satellite[C]//13th Space Thermophysics Society Congress. Beijing:Aircraft General Committee of China Aerospace Society, 2017:55-58(in Chinese).
[20] 宁献文, 蒋凡, 张栋, 等. 月球无人采样返回探测器一体化热管理方案[J]. 航天器环境工程, 2017, 34(6):598-603. NING X W, JIANG F, ZHANG D, et al. An integrated thermal management scheme for lunar robotic sampling and return probe[J]. Spacecraft Environment Engineering, 2017, 34(6):598-603(in Chinese).
[21] 张奕. 传热学[M]. 南京:东南大学出版社, 2004:113-114. ZHANG Y. Heat transfer[M]. Nanjing:Southeast University Press, 2004:113-114(in Chinese).
[22] 徐侃, 赵建福, 宁献文, 等. 高真空液态工质排放多变过程分析[J]. 真空与低温, 2015, 21(3):139-145. XU K, ZHAO J F, NING X W, et al. Complex process analysis of the working fluid evacuating in high vacuum[J]. Vacuum and Cryogenics, 2015, 21(3):139-145(in Chinese).
[23] 赵建福, 吴克, 徐侃, 等. 复杂流道液体真空排放中的气液两相流态模拟实验[J]. 载人航天, 2016, 22(6):727-731. ZHAO J F, WU K, XU K, et al. Simulation experiment on two-phase gas-liquid flow pattern in complex pipeline during liquid discharge in vacuum[J]. Manned Spaceflight, 2016, 22(6):727-731(in Chinese).
[24] 王德伟, 徐侃, 宁献文, 等. 高真空低重力环境下液态工质排放地面模拟试验研究[J]. 航天器环境工程, 2019, 36(3):257-263. WANG D W, XU K, NING X W, et al. Ground simulation test for the working fluid evacuation in high vacuum and low gravity environment[J]. Spacecraft Environment Engineering, 2019, 36(3):257-263(in Chinese).
[25] 王玉莹, 宁献文, 苗建印, 等. 嫦娥五号水升华热排散系统月面运行特性分析[J]. 中国科学:技术科学, 2021, 51(12):1445-1452. WANG Y Y, NING X W, MIAO J Y, et al. Work performance analysis on the Chang'e-5 lunar lander water sublimation heat dissipation system[J]. Scientia Sinica (Technologica), 2021, 51(12):1445-1452(in Chinese).
文章导航

/