流体力学与飞行力学

壁面函数在超声速湍流模拟中的应用

  • 王新光 ,
  • 毛枚良 ,
  • 何琨 ,
  • 陈琦 ,
  • 万钊
展开
  • 1. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    2. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621010

收稿日期: 2021-07-26

  修回日期: 2021-09-07

  网络出版日期: 2021-10-09

基金资助

国家数值风洞工程;国家自然科学基金(11972362);国家重大项目(GJXM92579)

Application of wall function to supersonic turbulence simulation

  • WANG Xinguang ,
  • MAO Meiliang ,
  • HE Kun ,
  • CHEN Qi ,
  • WAN Zhao
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2021-07-26

  Revised date: 2021-09-07

  Online published: 2021-10-09

Supported by

Nation Numerical Wind Tunnel Project; National Natural Science Foundation of China (11972362); National Major Projects (GJXM92579)

摘要

通过子迭代的方式计算摩擦速度, 更新虚拟点湍流黏性系数实现对壁面剪切应力的修正, 耦合SST k-ω两方程模型, 在国家数值风洞软件平台上实现了壁面函数程序模块。通过压缩拐角和高速飞行器典型算例进行考核, 初步数值实验结果表明:压缩拐角算例壁面函数在无量纲壁面距离y+≤200范围内, 均准确预测湍流边界层速度分布, 可显著提高粗网格上壁面湍流边界层和壁面摩擦系数的预测精度, 且壁面函数使用粗网格最多可节约75%的计算时间;对于复杂外形, 附面层网格间距变宽, 可使得整体网格减少约38%的网格总量, 在相同的计算设置情况下可节约60%的计算时间。唇口附近出现明显的激波边界层干扰现象, 使用壁面函数后稀网格和密网格得到流场中分离、激波反射相同, 且分离区最高压力系数偏差从15%降低到2%。从粗网格和密网格全机轴向力系数比较来看, 使用壁面函数后摩阻预测偏差可从40%下降到4%。整体来看, 壁面函数的引入提供了一种高效的飞行器湍流流动气动力预测方法。

本文引用格式

王新光 , 毛枚良 , 何琨 , 陈琦 , 万钊 . 壁面函数在超声速湍流模拟中的应用[J]. 航空学报, 2022 , 43(9) : 126153 -126153 . DOI: 10.7527/S1000-6893.2021.26153

Abstract

The wall function approach is implemented in the National Numerical Wind Tunnel software coupling the SST k-ω model through an iteration of the friction velocity and update of the turbulence viscosity at the virtual point to modify the wall shear stress. Verification of this approach by the compression corner and the high-speed flight vehicle shows that: the wall function approach with the coarse mesh (y+≤200) significantly improves the velocity distribution of the turbulence boundary layer and skin-friction with a 75% decrease in the computation time compared with the fine mesh. For the complex flight vehicle, the total mesh amount decreases by about 38% when the wall distance widens between the wall layers, and the CPU time consumption decrease by 60% with the same numerical setup. The shock/boundary layer interaction exists near the inlet, where similar flow separation and shock reflection are obtained for both the fine mesh and coarse mesh with the wall function approach. Comparison of axial force variation shows that the adoption of the wall function reduces the prediction error of skin friction from 40% to 4%, and the whole axial force from 15% to 2%. Overall, the wall function approach is an efficient numerical method for the turbulence force prediction of flight vehicles.

参考文献

[1] TENNEKES H, LUMLEY J L. A first course in turbulence[M]. Boston: MIT Press, 1972: 149-165.
[2] NICHOLS R. Development and validation of a two-equation turbulence model with wall functions for compressible flow[C]//14th Applied Aerodynamics Conference. Reston: AIAA, 1996.
[3] VIEGAS J, RUBESIN M, HORSTMAN C. On the use of wall functions as boundary conditions for two-dimensional separated compressible flows[C]//23rd Aerospace Sciences Meeting. Reston: AIAA, 1985.
[4] TAO Z, WU H J, YOU R Q, et al. Turbulent characteristics and rotation correction of wall function in rotating channel with high local rotation parameter[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1985-1999.
[5] LIU J, WU S P. Generalized wall function and its application to compressible turbulent boundary layer over a flat plate[J]. Journal of Physics: Conference Series, 2017, 822: 012017.
[6] HE X Z, ZHAO H Y, LE J L. Application of wall function boundary condition considering heat transfer and compressibility[J]. Acta Aerodynamica Sinica, 2006, 24(4): 450-453 (in Chinese). 贺旭照, 赵慧勇, 乐嘉陵. 考虑可压缩与热传导的壁面函数边界条件及其应用[J]. 空气动力学学报, 2006, 24(4): 450-453.
[7] HE X Z, ZHAO H Y, LE J L. Aerodynamic force and heat of hypersonic laminar and turbulent flows[J]. Chinese Journal of Computational Physics, 2008, 25(5): 555-560 (in Chinese). 贺旭照, 赵慧勇, 乐嘉陵. 吸气式高超声速飞行器气动力气动热的数值模拟方法与应用[J]. 计算物理, 2008, 25(5): 555-560.
[8] WU X J, MA M S, DENG Y Q, et al. Two turbulence models for the computation of transonic flow[J]. Acta Aerodynamica Sinica, 2008, 26(1): 85-90 (in Chinese). 吴晓军, 马明生, 邓有奇, 等. 两种湍流模型在跨声速绕流计算的应用研究[J]. 空气动力学学报, 2008, 26(1): 85-90.
[9] XIAO H L, LUO J S. Improvement of sub-grid model in large eddy simulation and applications in turbulent channel flow[J]. Journal of Aerospace Power, 2007, 22(4): 583-587 (in Chinese). 肖红林, 罗纪生. 大涡模拟中亚格子模型的改进及其在槽道湍流中的应用[J]. 航空动力学报, 2007, 22(4): 583-587.
[10] GAO Z X, JIANG C W, LEE C. Improvement and application of wall function boundary condition for high-speed compressible flows[J]. Science China Technological Sciences, 2013, 56(10): 2501-2515.
[11] TAO Z, WU H J, YOU R Q, et al. Turbulent characteristics and rotation correction of wall function in rotating channel with high local rotation parameter[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1985-1999.
[12] GRANVILLE P S. A modified van driest formula for the mixing length of turbulent boundary layers in pressure gradients[J]. Journal of Fluids Engineering, 1989, 111(1): 94-97.
[13] DURBIN P A, BELCHER S E. Scaling of adverse-pressure-gradient turbulent boundary layers[J]. Journal of Fluid Mechanics, 1992, 238: 699-722.
[14] MAO M L, MIN Y B, WANG X G, et al. Overview of wall functions for compressible turbulent boundary layers[J]. Acta Aerodynamica Sinica, 2021, 39(2): 1-11 (in Chinese). 毛枚良, 闵耀兵, 王新光, 等. 可压缩湍流边界层壁面函数方法综述[J]. 空气动力学学报, 2021, 39(2): 1-11.
[15] CRAFT T J, GERASIMOV A V, IACOVIDES H, et al. Progress in the generalization of wall-function treatments[J]. International Journal of Heat and Fluid Flow, 2002, 23(2): 148-160.
[16] WANG X G, CHEN Q, WAN Z, et al. Studyon an analytical wall function approach including compressibility[J]. Journal of Astronautics, 2021, 42(6): 731-739 (in Chinese). 王新光, 陈琦, 万钊, 等. 解析壁面函数的可压缩效应修正研究[J]. 宇航学报, 2021, 42(6): 731-739.
[17] FRINK N T. Tetrahedral unstructured Navier-Stokes method for turbulent flows[J]. AIAA Journal, 1998, 36(11): 1975-1982.
[18] GONCALVES E, HOUDEVILLE R. Reassessment of the wall functions approach for RANS computations[J]. Aerospace Science and Technology, 2001, 5(1): 1-14.
[19] ESCH T, MENTER F R. Heat transfer predictions using advanced two-equation turbulence models[C]//The 4th Internal Symposium, Turbulence, Heat and Mass Transfer, 2003.
[20] TIDRIRI M D. Domain decomposition for compressible Navier-Stokes equations with different discretizations and formulations[J]. Journal of Computational Physics, 1995, 119(2): 271-282.
[21] KNOPP T, ALRUTZ T, SCHWAMBORN D. A grid and flow adaptive wall-function method for RANS turbulence modelling[J]. Journal of Computational Physics, 2006, 220(1): 19-40.
[22] KALITZIN G, MEDIC G, IACCARINO G, et al. Near-wall behavior of RANS turbulence models and implications for wall functions[J]. Journal of Computational Physics, 2005, 204(1): 265-291.
[23] ZHEN T K, ZUBAIR M, AHMAD K A. Experimental and numerical investigation of the effects of passive vortex generators onAludra UAV performance[J]. Chinese Journal of Aeronautics, 2011, 24(5): 577-583.
[24] WANG K, XU G Q, SUN J N, et al. Effects ofdiameter ratio on the characteristics of flow and heat transfer in hybrid cooling configuration[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 823-828 (in Chinese). 王开, 徐国强, 孙纪宁, 等. 直径比对冲击气膜组合冷却流动与换热的影响[J]. 航空学报, 2008, 29(4): 823-828.
[25] VIESER W, ESCH T, MENTER F. Heat transfer predictions using advanced two-equation turbulence models: CFX Technical Memorandum CFX-VAL10/0602[R]. Pittsburgh: CFX, 2002.
[26] SETTLES G S, DODSON L J. Supersonic and hypersonic shock/boundary-layer interaction database[J]. AIAA Journal, 1994, 32(7): 1377-1383.
[27] GEROLYMOS G A, SAURET E, VALLET I. Oblique-shock-wave/boundary-layer interaction using near-wall Reynolds-stress models[J]. AIAA Journal, 2004, 42(6): 1089-1100.
文章导航

/