激波/边界层干扰机理与控制专栏

受限流动中激波诱导分离的结构分析

  • 谢祝轩 ,
  • 杨彦广 ,
  • 王刚
展开
  • 1. 中国空气动力研究与发展中心 超高速所, 绵阳 621000;
    2. 中国空气动力研究与发展中心, 绵阳 621000

收稿日期: 2021-07-02

  修回日期: 2021-10-11

  网络出版日期: 2021-10-09

基金资助

国家重点研发计划(2019YFA0405300);中国空气动力研究与发展中心基础和前沿技术研究基金(PJD20190075)

Structure of shock-induced separation in confined flow

  • XIE Zhuxuan ,
  • YANG Yanguang ,
  • WANG Gang
Expand
  • 1. Hypervelocity Aerodynamics Institute,CADRC,Mianyang 621000,China;
    2. China Aerodynamics Research and Development Center,Mianyang 621000,China

Received date: 2021-07-02

  Revised date: 2021-10-11

  Online published: 2021-10-09

Supported by

National Key R&D Program of China(2019YFA0405300);Foundation and Frontier Technology Research Fund of CARDC(PJD20190075)

摘要

为了探索内流道中激波/边界层干扰引起的流动分离结构,采用RANS方法对马赫6来流下不同宽度、高度的带有20°楔角的矩形内流道流动进行计算,对内流道中分离结构开展了研究,重点关注了内流道下壁面中心区域分离的结构特征,比较了不同几何参数下的流动结构,总结其变化规律并简单讨论了各参数的影响机制。结果表明:内流道中激波诱导的分离具有复杂的三维结构,下壁面中心分离区涡结构呈"Ω"形,并通过两侧的旋风涡与侧壁面附近的分离发生质量交换。在给定来流状态参数的条件下,下壁面分离结构主要受宽度W(主要影响旋风涡之间的距离)和高度H(主要影响侧端分离尺寸及旋风涡与侧壁间距离)的影响。旋风涡之间的相互干扰是中心分离呈现二维特征或三维特征的关键。

本文引用格式

谢祝轩 , 杨彦广 , 王刚 . 受限流动中激波诱导分离的结构分析[J]. 航空学报, 2022 , 43(1) : 626042 -626042 . DOI: 10.7527/S1000-6893.2021.26042

Abstract

To study the flow separation caused by the shock wave/boundary layer interaction in the inner flow channel, RANS method is used to calculate the flow in a rectangular channel with a 20° wedge angle of different widths and heights under Mach 6 inflow. Studies on the separation structure of the inner flow channel are carried outby focusing on the structural characteristics of the separation in the center region of the bottom wall, comparing the flow structures under different geometric parameters, and summarizing the variation rules as well as discussing the influence mechanism of each parameter. The results show that the separation induced by shock wave in the inner channel has a complex three-dimensional structure; the vortex structure in the center separation zone of the bottom wall is "Ω"-shaped; the mass exchange with the separation near the side wall occurs through the cyclone vortex of "Ω" vortex. Under the condition of given inflow state parameters, the separation structure of the bottom wall is mainly affected by channel width W and height H, where H mainly affects the separation size near the side wall and the distance between the cyclone vortex and the side wall, and W mainly affects the distance between the cyclone vortex. The interaction between the cyclone vortexes is the key to the central separation of the present two-dimensional or three-dimensional features.

参考文献

[1] DOLLING D S. Fifty years of shock-wave/boundary-layer interaction research: what next?[J]. AIAA Journal, 2001, 39(8): 1517-1531.
[2] REDA D C, MURPHY J D. Shock wave/turbulent boundary-layer interactions in rectangular channels[J]. AIAA Journal, 1973, 11(2): 139-140.
[3] AGOSTINI L, LARCHEVêQUE L, GARNIER E, et al. Numerical study of three-dimensional modulations in a shock-induced separation[C]//Progress in Flight Physics, 2012.
[4] GROSSMAN I J, BRUCE P J. Effect of confinement on shock wave-boundary layer interactions in rectangular intakes[C]//54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016.
[5] 童福林, 李新亮, 唐志共, 等. 转捩对压缩拐角激波/边界层干扰分离泡的影响[J]. 航空学报, 2016, 37(10): 2909-2921. TONG F L, LI X L, TANG Z G, et al. Transition effect on separation bubble of shock wave/boundary layer interaction in a compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 2909-2921(in Chinese).
[6] 童福林, 唐志共, 李新亮, 等. 压缩拐角激波与旁路转捩边界层干扰数值研究[J]. 航空学报, 2016, 37(12): 3588-3604. TONG F L, TANG Z G, LI X L, et al. Numerical study of shock wave and bypass transitional boundary layer interaction in a supersonic compression ramp[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3588-3604(in Chinese).
[7] BRUCE P, BABINSKY H. Behaviour of unsteady transonic shock/boundary layer interactions with three-dimensional effects[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
[8] BURTON D M F, BABINSKY H. Corner separation effects for normal shock wave/turbulent boundary layer interactions in rectangular channels[J]. Journal of Fluid Mechanics, 2012, 707: 287-306.
[9] BABINSKY H, OOREBEEK J, COTTINGHAM T. Corner effects in reflecting oblique shock-wave/boundary-layer interactions[C]//51 st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
[10] BABINSKY H, HARVEY J K. Shock wave-boundary-layer interactions[M]. Cambridge: Cambridge University Press, 2011.
[11] BENEK J, SUCHYTA C, BABINSKY H. The effect of tunnel size on incident shock boundary layer interaction experiments[C]//51 st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
[12] BENEK J A, SUCHYTA C J, BABINSKY H. The effect of wind tunnel size and shock strength on incident shock boundary layer interaction experiments[C]//44th AIAA Fluid Dynamics Conference. Reston: AIAA, 2014.
[13] WANG B, SANDHAM N D, HU Z W, et al. Numerical study of oblique shock-wave/boundary-layer interaction considering sidewall effects[J]. Journal of Fluid Mechanics, 2015, 767: 526-561.
[14] DAVIS D O, GESSNER F B. Further experiments on supersonic turbulent flow development in a square duct[J]. AIAA Journal, 1989, 27(8): 1023-1030.
[15] BRUCE P J K, BURTON D M F, TITCHENER N A, et al. Corner effect and separation in transonic channel flows[J]. Journal of Fluid Mechanics, 2011, 679: 247-262.
[16] GAITONDE D V, VISBAL M R, SHANG J S, et al. Sidewall interaction in an asymmetric simulated scramjet inlet configuration[J]. Journal of Propulsion and Power, 2001, 17(3): 579-584.
[17] XIANG X, BABINSKY H. Corner effects in oblique shock wave/boundary layer interactions in rectangular channels[C]//55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
[18] GALBRAITH D, TURNER M, ORKWIS P, et al. The effect of aspect ratio on a Mach 2.75 shock boundary layer interaction confguration[C]//51 st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013.
[19] EAGLE W E, DRISCOLL J F. Shock wave-boundary layer interactions in rectangular inlets: Three-dimensional separation topology and critical points[J]. Journal of Fluid Mechanics, 2014, 756: 328-353.
[20] 王广兴. 迎风面转捩与背风面大分离共存流动一体化研究[D]. 北京: 清华大学, 2019. WANG G X. Studies of complex flows with both transition on the windward side and massive separation on the leeward side[D]. Beijing: Tsinghua University. 2019.
[21] 高宇驰. 高超声速边界层转捩装置设计与转捩模拟研究[D]. 北京: 清华大学, 2017. GAO Y C. Design and transition simulation of hypersonic boundary layer trip[D]. Beijing: Tsinghua University, 2017.
[22] BERMEJO-MORENO I, CAMPO L, LARSSON J, et al. Confinement effects in shock wave/turbulent boundary layer interactions through wall-modelled large-eddy simulations[J]. Journal of Fluid Mechanics, 2014, 758: 5-62.
文章导航

/