固体力学与飞行器总体设计

基于多边形膜片弹簧与压电致动器复合的一体化主被动Stewart减振系统

  • 王敏 ,
  • 吴军卫 ,
  • 蒲华燕 ,
  • 孙翊 ,
  • 彭艳 ,
  • 谢少荣 ,
  • 罗均 ,
  • 丁基恒
展开
  • 1. 上海大学 无人艇工程研究院, 上海 200444;
    2. 重庆大学 机械传动国家重点实验室, 重庆 400044;
    3. 同济大学 上海智能科学与技术研究院, 上海 200082

收稿日期: 2020-07-16

  修回日期: 2020-10-22

  网络出版日期: 2021-09-29

基金资助

国家自然科学基金(61903242,61873157,61922053,91748116);上海扬帆计划(19YF1416200)

Integrated active and passive Stewart vibration damping system based on polygonal diaphragm spring and piezoelectric actuator

  • WANG Min ,
  • WU Junwei ,
  • PU Huayan ,
  • SUN Yi ,
  • PENG Yan ,
  • XIE Shaorong ,
  • LUO Jun ,
  • DING Jiheng
Expand
  • 1. Research Institute of USV Engineering, Shanghai University, Shanghai 200444, China;
    2. State Key Laboratory of Mechanical Transmissions, Chongqing University, Chongqing 400044, China;
    3. Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200082, China

Received date: 2020-07-16

  Revised date: 2020-10-22

  Online published: 2021-09-29

Supported by

National Natural Science Foundation of China (61903242,61873157,61922053,91748116);Shanghai Sailing Program(19YF1416200)

摘要

随着遥感卫星光学成像设备等精度的不断提升,其对振动环境的要求也在不断提高,简单的线性被动Stewart平台已经无法满足苛刻使用要求。提出了一种新型基于多边形膜片弹簧与压电致动器复合的一体化主被动Stewart减振平台,其单自由度元件主要由多边形膜片弹簧、压电致动器、力传感器以及柔性铰链组成。相较于传统线性隔振器存在的高静刚度和低动刚度之间的固有结构矛盾,所提出的多边形膜片弹簧作为隔振器的关键原件,兼具高静-低动(HSLD)特性,能够使隔振系统同时具备较高的静态刚度进行静态承载以及较低的动刚度进行动态减振。为了降低被动隔振系统中存在的共振峰幅值,本文在被动膜片弹簧元件的基础上串联一个压电致动器与力传感器组成的主动控制元件进行主动振动控制。仿真结果表明,采用比例积分力(PIF)反馈控制算法的主动控制系统,在频域上不仅可以通过积分力环节搭建出天棚阻尼的效果来降低共振峰峰值(11.19 dB),而且其比例-力环节可等效为增大了质量矩阵项,能够有效降低减振系统的固有频率(20.9 Hz),拓宽其减振带宽,并同时能维持高频段的高衰减性,在时域上也能够将系统的加速度振动幅值从±0.6g降低至±0.07g,振动衰减达88%。

本文引用格式

王敏 , 吴军卫 , 蒲华燕 , 孙翊 , 彭艳 , 谢少荣 , 罗均 , 丁基恒 . 基于多边形膜片弹簧与压电致动器复合的一体化主被动Stewart减振系统[J]. 航空学报, 2021 , 42(9) : 224532 -224532 . DOI: 10.7527/S1000-6893.2021.24532

Abstract

Continuous improvement in the accuracy of remote sensing satellite optical imaging equipment places increasingly higher demands on the vibration environment, and the simple linear passive Stewart platform can no longer satisfy the stringent requirements. A new integrated active and passive Stewart vibration damping platform based on the combination of the polygonal diaphragm spring and the piezoelectric actuator is presented. The single leg of this platform is mainly composed of a polygonal diaphragm spring, a piezoelectric actuator, a force sensor and two flexure hinges. To resolve the inherent contradiction between the high static stiffness and the low dynamic stiffness in the traditional linear vibration isolator, this paper proposes a polygonal diaphragm spring, the key component of the vibration isolator, with High-Static-Low-Dynamic (HSLD) characteristics. It enables high static stiffness for static loading and low dynamic stiffness for dynamic vibration reduction of the vibration isolation system. To reduce the amplitude of the resonance peak in the passive vibration isolation system, we connect an active control element consisting of a piezoelectric actuator and a force sensor in series on the basis of the passive diaphragm spring element to control the active vibration. The simulation results show that the active control system using the PIF feedback control algorithm can reduce the peak value of resonance (11.9 dB) by building the effect of ceiling damping through the integral force link in frequency domain, as well as increase the mass matrix term, effectively reducing the natural frequency (20.9 Hz) of the damping system and broadening its damping effect. Meanwhile, it can maintain the high attenuation of the high frequency band, and reduce, in the time domain, the acceleration vibration amplitude of the system from ±0.6 g to ±0.07 g, with the vibration attenuation reaching 88%.

参考文献

[1] 吴伟光, 马履中, 杨启志, 等. 车辆并联机构座椅三维减振研究[J]. 农业机械学报, 2011, 42(6):23-27. WU W G, MA L Z, YANG Q Z, et al. 3-D vibration isolation of vehicle seat based on parallel mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6):23-27(in Chinese).
[2] 叶鹏达, 尤晶晶, 沈惠平, 等. 6支链台体型Stewart衍生构型位置正解半解析算法[J]. 农业机械学报, 2019, 50(4):393-400. YE P D, YOU J J, SHEN H P, et al. Semi-analytic algorithm for forward displacement analysis of six links Stewart derivative configurations[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4):393-400(in Chinese).
[3] ZHOU J X, WANG K, XU D L, et al. A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts[J]. Journal of Vibration and Acoustics, 2017, 139(3):034502.
[4] 吕俊超, 陈照波, 焦映厚, 等. 基于音圈电机的Stewart主动隔振平台设计[J]. 机械设计与制造, 2013(2):62-65. LVJ C, CHEN Z B, JIAO Y H, et al. Design of Stewart active vibration isolation platform based on voice coil motor[J]. Machinery Design & Manufacture, 2013(2):62-65(in Chinese).
[5] PREUMONT A, HORODINCA M, ROMANESCU I, et al. A six-axis single-stage active vibration isolator based on Stewart platform[J]. Journal of Sound and Vibration, 2007, 300(3-5):644-661.
[6] 李伟鹏. 空间高稳定精密跟瞄Hexapod平台指向与振动控制研究[D]. 北京:北京航空航天大学, 2008 LI W P. Pointing and vibration control of space-base high stability precise pointing and tracking hexapod[D]. Beijing:Beihang University, 2008. (in Chinese).
[7] HANIEH A A B. Active isolation and damping of vibrations via Stewart platform[D]. Brüssel:Universite Libre de Bruxelles, 2003.
[8] 杨宇, 郑淑涛, 韩俊伟. 基于动力学的Stewart平台振动控制策略研究[J]. 农业机械学报, 2010, 41(6):20-24. YANG Y, ZHENG S T, HAN J W. Stewart platform vibration control strategy based on dynamics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(6):20-24(in Chinese).
[9] 李永泉, 刘天旭, 王立捷, 等. Stewart平台多能域系统动力学全解建模与实验[J]. 农业机械学报, 2018, 49(4):404-411. LIY Q, LIU T X, WANG L J, et al. Multi-energy domain dynamic full solution model and Experiment of Stewart Platform[J]. Transactions of The Chinese Society of Agricultural Machinery, 2018, 49(04):411-418. (in Chinese).
[10] HILLER M W, BRYANT M D, UMEGAKI J. Attenuation and transformation of vibration through active control of magnetostrictive terfenol[J]. Journal of Sound and Vibration, 1989, 134(3):507-519.
[11] LE T D, AHN KK. A vibration isolation system in low frequency excitation region using negative stiffness structure for vehicle seat[J]. Journal of Sound and Vibration, 2011, 330(26):6311-6335.
[12] ZHANG J Z, LI D, CHEN M J, et al. An ultra-low frequency parallel connection nonlinear isolator for precision instruments[J]. Key Engineering Materials, 2004, 257-258:231-238.
[13] KOVACIC I, BRENNAN M J, WATERS T P. A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic[J]. Journal of Sound and Vibration, 2008, 315(3):700-711.
[14] CARRELLA A, BRENNAN M J, KOVACIC I, et al. On the force transmissibility of a vibration isolator with quasi-zero-stiffness[J]. Journal of Sound and Vibration, 2009, 322(4-5):707-717.
[15] CARRELLA A, BRENNAN M J, WATERS T P. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2007, 301(3-5):678-689.
[16] LIU X T, HUANG X C, HUA H X. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector[J]. Journal of Sound and Vibration, 2013, 332(14):3359-3376.
[17] ZHENG Y S, LI Q P, YAN B, et al. A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs[J]. Journal of Sound and Vibration, 2018, 422:390-408.
[18] ZHENG Y S, ZHANG X N, LUO Y J, et al. Analytical study of a quasi-zero stiffness coupling using a torsion magnetic spring with negative stiffness[J]. Mechanical Systems and Signal Processing, 2018, 100:135-151.
[19] ZHENG Y S, ZHANG X N, LUO Y J, et al. Design and experiment of a high-static-low-dynamic stiffness isolator using a negative stiffness magnetic spring[J]. Journal of Sound and Vibration, 2016, 360:31-52.
[20] WU W J, CHEN X D, SHAN Y H. Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness[J]. Journal of Sound and Vibration, 2014, 333(13):2958-2970.
[21] LI Q, ZHU Y, XU D F, et al. A negative stiffness vibration isolator using magnetic spring combined with rubber membrane[J]. Journal of Mechanical Science and Technology, 2013, 27(3):813-824.
[22] SHAN Y H, WU W J, CHEN X D. Design of a miniaturized pneumatic vibration isolator with high-static-low-dynamic stiffness[J]. Journal of Vibration and Acoustics, 2015, 137(4):045001.
[23] XU D L, YU Q P, ZHOU J X, et al. Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic[J]. Journal of Sound and Vibration, 2013, 332(14):3377-3389.
[24] GENG Z J, HAYNES L S. Six degree-of-freedom active vibration control using the Stewart platforms[J]. IEEE Transactions on Control Systems Technology, 1994, 2(1):45-53.
[25] TU Y Q, YANG G L, CAI Q Z, et al. Optimal design of SINS's Stewart platform bumper for restoration accuracy based on genetic algorithm[J]. Mechanism and Machine Theory, 2018, 124:42-54.
[26] SHI X, ZHU S Y. Magnetic negative stiffness dampers[J]. Smart Materials and Structures, 2015, 24(7):072002.
[27] ZHOU J X, WANG K, XU D L, et al. A six degrees-of-freedom vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts[J]. Journal of Vibration and Acoustics, 2017, 139(3):034502.
[28] VIRGIN L N, DAVIS R B. Vibration isolation using buckled struts[J]. Journal of Sound and Vibration, 2003, 260(5):965-973.
文章导航

/