The valveless scheme has been verified to be able to produce high-frequency detonations because it eliminates mechanical valves, which is believed to be setting a ceiling frequency of intermittent supplies of fuel, oxidizer, and purge gas. However, the highest detonation frequency achieved under such a scheme does not exceed 150 Hz. In order to further investigate this scheme utilizing liquid fuels and its possibility to produce detonations in a higher frequency, gasoline has been employed to verify whether high-frequency detonations can be obtained with and without the purge process. The influences of filling pressure, oxygen volume fraction, and injection conditions on the initiation and propagation characteristics of high-frequency detonations have been studied experimentally. The results show that using gasoline can achieve high-frequency detonations under the valveless and purgeless scheme, and the valveless and purge scheme. The highest frequencies achieved are 300 Hz and 210 Hz respectively. When the oxygen volume fraction is 40% and 50% in the valveless and purgeless scheme, the corresponding ranges of the equivalence ratio to produce stable detonations are 0.90-1.49 and 0.74-1.82, respectively, while the range of the equivalence ratio is 0.95-1.61 in the valveless and purge scheme. It is concluded that the valveless and purge scheme can effectively reduce the appearance of deflagration, and the upper limit of the equivalent oxygen volume fraction to ensure stable operation is 58%. The key to producing high-frequency detonations is to form an effective buffer zone in valveless scheme. Oxygen-poor or fuel-poor mixtures can replace common inert gases as purge gas.
[1] KAILASANATH K. Recent developments in the research on pulse detonation engines[J]. AIAA Journal, 2003, 41(2):145-159.
[2] WOLAN'SKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158.
[3] 谭风光, 王可, 于潇栋, 等. 无阀式脉冲爆震火箭发动机运行稳定性实验[J]. 航空学报, 2021, 42(3):124189. TAN F G, WANG K, YU X D, et al. Experiment on operation stability of valveless pulse detonation rocket engine[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):124189(in Chinese).
[4] MA J Z, LUAN M Y, XIA Z J, et al. Recent progress, development trends, and consideration of continuous detonation engines[J]. AIAA Journal, 2020, 58(12):4976-5035.
[5] 王兵, 谢峤峰, 闻浩诚, 等. 爆震发动机研究进展[J]. 推进技术, 2021, 42(4):721-737, 716. WANG B, XIE Q F, WEN H C, et al. Research progress of detonation engines[J]. Journal of Propulsion Technology, 2021, 42(4):721-737, 716(in Chinese).
[6] NLCHOLLS J A, CULLEN R E, RAGLAND K W. Feasibility studies of a rotating detonation wave rocket motor[J]. Journal of Spacecraft and Rockets, 1966, 3(6):893-898.
[7] KASAHARA J, KATO Y, ISHIHARA K, et al. Application of detonation waves to rocket engine chamber[M]//LI J M, TEO C J, KHOO B C, et al. Detonation control for propulsion. Cham:Springer, 2018:61-76.
[8] 赵明皓, 王可, 王致程, 等. 点火方式对空桶型旋转爆震燃烧室起爆特性的影响[J]. 航空学报, 2022, 43(1):124870. ZHAO M H, WANG K, WANG Z C, et al. Effects of ignition on initiation characteristics of hollow rotating detonation combustor[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1):124870(in Chinese).
[9] DUNLAP R, BREHM R L, NICHOLLS J A. A preliminary study of the application of steady-state detonative combustion to a reaction engine[J]. Journal of Jet Propulsion, 1958, 28(7):451-456.
[10] FUSINA G, SISLIAN J P, PARENT B. Formation and stability of near Chapman-Jouguet standing oblique detonation waves[J]. AIAA Journal, 2005, 43(7):1591-1604.
[11] 滕宏辉, 杨鹏飞, 张义宁, 等. 斜爆震发动机的流动与燃烧机理[J]. 中国科学:物理学力学天文学, 2020, 50(9):129-151. TENG H H, YANG P F, ZHANG Y N, et al. Flow and combustion mechanism of oblique detonation engines[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(9):129-151(in Chinese).
[12] 张少杰, 蔡晓东, 陈伟强, 等. 超声速气流中的爆震推进理论与研究进展[J]. 气体物理, 2018, 3(2):27-38. ZHANG S J, CAI X D, CHEN W Q, et al. Theory and research progress of detonation propulsion in supersonic flow[J]. Physics of Gases, 2018, 3(2):27-38(in Chinese).
[13] 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安:西北工业大学出版社, 2005. YAN C J, FAN W. Principle and key technology of pulse detonation engine[M]. Xi'an:Northwestern Polytechnical University Press, 2005(in Chinese).
[14] EIDELMAN S, GROSSMANN W, LOTTATI I. Review of propulsion applications and numerical simulations of the pulsed detonation engine concept[J]. Journal of Propulsion and Power, 1991, 7(6):857-865.
[15] KAILASANATH K. Review of propulsion applications of detonation waves[J]. AIAA Journal, 2000, 38(9):1698-1708.
[16] ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion:Challenges, current status, and future perspective[J]. Progress in Energy and Combustion Science, 2004, 30(6):545-672.
[17] MCMANUS K, FURLONG E, LEYVA I, et al. MEMS-based pulse detonation engine for small-scale propulsion applications:AIAA-2001-3469[R]. Reston:AIAA,2001.
[18] LANDRY K, SHEHADEH R, BOUVET N, et al. Effect of operating frequency on PDE driven ejector thrust performance:AIAA-2005-3832[R]. Reston:AIAA, 2005.
[19] WANG K, FAN W. Efforts on high-frequency pulse detonation engines[J]. Journal of Propulsion and Power, 2016, 33(1):17-28.
[20] VALAEV A A, ZHIMERIN D G, MIRONOV E A. Method and apparatus for intermittent combustion:US3954380A[P]. 1976.
[21] SHIMO M, HEISTER S D. Multicyclic-detonation-initiation studies in valveless pulsed detonation combustors[J]. Journal of Propulsion and Power, 2008, 24(2):336-344.
[22] SHIMO M, MEYER S. Valveless pulsed detonation combustor:US7758334B2[P]. 2010.
[23] WANG K, FAN W, LU W, et al. Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process[J]. Energy, 2014, 71:605-614.
[24] ZHANG Q B, FAN W, WANG K, et al. Impact of nozzles on a valveless pulse detonation rocket engine without the purge process[J]. Applied Thermal Engineering, 2016, 100:1161-1168.
[25] MATSUOKA K, TAKI H, KAWASAKI A, et al. Semi-valveless pulse detonation cycle at a kilohertz-scale operating frequency[J]. Combustion and Flame, 2019, 205:434-440.
[26] ENDO T. Thermal spray by pulsed detonations[C]//2013 International Workshop on Detonation for Propulsion. Wright-Patterson AFB:Air Force Research Laboratory, 2013.
[27] LU W, FAN W, WANG K, et al. Operation of a liquid-fueled and valveless pulse detonation rocket engine at high frequency[J]. Proceedings of the Combustion Institute, 2017, 36(2):2657-2664.
[28] 王可. 高频脉冲爆震火箭发动机关键技术研究[D]. 西安:西北工业大学, 2014. WANG K. Investigations on key technologies of a high-frequency pulse detonation rocket engine[D]. Xi'an:Northwestern Polytechnical University, 2014.
[29] WANG K, FAN W, LU W, et al. One method to increase the operating frequency of pulse detonation rocket engines[J]. Journal of Propulsion and Power, 2014, 30(2):518-522.