流体力学与飞行力学

无阀模式下液态燃料高频爆震燃烧组织方法

  • 于潇栋 ,
  • 王可 ,
  • 朱亦圆 ,
  • 赵明皓 ,
  • 孙田雨 ,
  • 郭俊睿 ,
  • 范玮
展开
  • 1. 西北工业大学 动力与能源学院, 西安 710129;
    2. 西北工业大学 陕西省航空动力系统热科学重点实验室, 西安 710129

收稿日期: 2021-08-18

  修回日期: 2021-09-02

  网络出版日期: 2021-09-22

基金资助

国家自然科学基金(52076181,52176133);陕西省创新能力支撑计划(2021KJXX-93);中央高校基本科研业务费(3102019ZX024)

Combustion methods of liquid fueled high-frequency detonations in valveless scheme

  • YU Xiaodong ,
  • WANG Ke ,
  • ZHU Yiyuan ,
  • ZHAO Minghao ,
  • SUN Tianyu ,
  • GUO Junrui ,
  • FAN Wei
Expand
  • 1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710129, China;
    2. Shaanxi Key Laboratory of Thermal Sciences in Aeroengine System, Northwestern Polytechnical University, Xi'an 710129, China

Received date: 2021-08-18

  Revised date: 2021-09-02

  Online published: 2021-09-22

Supported by

National Natural Science Foundation of China (52076181, 52176133); Innovation Capability Support Program of Shaanxi Province (2021KJXX-93); Fundamental Research Funds for the Central Universities (3102019ZX024)

摘要

无阀工作模式摆脱了机械阀门作动频率的限制,已被证实可用于脉冲爆震燃烧的高频间歇式供给,但实现的最高爆震频率不高于150 Hz。为进一步探索基于液态燃料的高频爆震燃烧组织方法,以及该工作模式实现更高频率爆震燃烧的可行性,针对无隔离和有隔离两种工作方式,实验研究了以汽油为燃料的高频爆震燃烧稳定工作的可行性,并探索了填充压力、氧气体积分数和喷注条件对高频爆震波产生和传播特性的影响。结果表明,采用汽油在无阀无隔离和无阀有隔离工作方式下均可实现高频爆震燃烧,实现的最高频率分别为300 Hz和210 Hz;无隔离工作方式下,氧气体积分数为40%和50%时对应的稳定爆震当量比范围分别为0.90~1.49和0.74~1.82;有隔离工作方式下,稳定爆震当量比范围为0.95~1.61;无阀有隔离模式可有效降低连续缓燃的发生,高频爆震稳定工作时对应的等效氧气体积分数上限为58%。无阀模式下,实现高频爆震燃烧的关键在于形成有效的隔离区,贫氧或贫油混合物可替代传统的惰性介质作为隔离气体。

本文引用格式

于潇栋 , 王可 , 朱亦圆 , 赵明皓 , 孙田雨 , 郭俊睿 , 范玮 . 无阀模式下液态燃料高频爆震燃烧组织方法[J]. 航空学报, 2022 , 43(12) : 126245 -126245 . DOI: 10.7527/S1000-6893.2021.26245

Abstract

The valveless scheme has been verified to be able to produce high-frequency detonations because it eliminates mechanical valves, which is believed to be setting a ceiling frequency of intermittent supplies of fuel, oxidizer, and purge gas. However, the highest detonation frequency achieved under such a scheme does not exceed 150 Hz. In order to further investigate this scheme utilizing liquid fuels and its possibility to produce detonations in a higher frequency, gasoline has been employed to verify whether high-frequency detonations can be obtained with and without the purge process. The influences of filling pressure, oxygen volume fraction, and injection conditions on the initiation and propagation characteristics of high-frequency detonations have been studied experimentally. The results show that using gasoline can achieve high-frequency detonations under the valveless and purgeless scheme, and the valveless and purge scheme. The highest frequencies achieved are 300 Hz and 210 Hz respectively. When the oxygen volume fraction is 40% and 50% in the valveless and purgeless scheme, the corresponding ranges of the equivalence ratio to produce stable detonations are 0.90-1.49 and 0.74-1.82, respectively, while the range of the equivalence ratio is 0.95-1.61 in the valveless and purge scheme. It is concluded that the valveless and purge scheme can effectively reduce the appearance of deflagration, and the upper limit of the equivalent oxygen volume fraction to ensure stable operation is 58%. The key to producing high-frequency detonations is to form an effective buffer zone in valveless scheme. Oxygen-poor or fuel-poor mixtures can replace common inert gases as purge gas.

参考文献

[1] KAILASANATH K. Recent developments in the research on pulse detonation engines[J]. AIAA Journal, 2003, 41(2):145-159.
[2] WOLAN'SKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158.
[3] 谭风光, 王可, 于潇栋, 等. 无阀式脉冲爆震火箭发动机运行稳定性实验[J]. 航空学报, 2021, 42(3):124189. TAN F G, WANG K, YU X D, et al. Experiment on operation stability of valveless pulse detonation rocket engine[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):124189(in Chinese).
[4] MA J Z, LUAN M Y, XIA Z J, et al. Recent progress, development trends, and consideration of continuous detonation engines[J]. AIAA Journal, 2020, 58(12):4976-5035.
[5] 王兵, 谢峤峰, 闻浩诚, 等. 爆震发动机研究进展[J]. 推进技术, 2021, 42(4):721-737, 716. WANG B, XIE Q F, WEN H C, et al. Research progress of detonation engines[J]. Journal of Propulsion Technology, 2021, 42(4):721-737, 716(in Chinese).
[6] NLCHOLLS J A, CULLEN R E, RAGLAND K W. Feasibility studies of a rotating detonation wave rocket motor[J]. Journal of Spacecraft and Rockets, 1966, 3(6):893-898.
[7] KASAHARA J, KATO Y, ISHIHARA K, et al. Application of detonation waves to rocket engine chamber[M]//LI J M, TEO C J, KHOO B C, et al. Detonation control for propulsion. Cham:Springer, 2018:61-76.
[8] 赵明皓, 王可, 王致程, 等. 点火方式对空桶型旋转爆震燃烧室起爆特性的影响[J]. 航空学报, 2022, 43(1):124870. ZHAO M H, WANG K, WANG Z C, et al. Effects of ignition on initiation characteristics of hollow rotating detonation combustor[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1):124870(in Chinese).
[9] DUNLAP R, BREHM R L, NICHOLLS J A. A preliminary study of the application of steady-state detonative combustion to a reaction engine[J]. Journal of Jet Propulsion, 1958, 28(7):451-456.
[10] FUSINA G, SISLIAN J P, PARENT B. Formation and stability of near Chapman-Jouguet standing oblique detonation waves[J]. AIAA Journal, 2005, 43(7):1591-1604.
[11] 滕宏辉, 杨鹏飞, 张义宁, 等. 斜爆震发动机的流动与燃烧机理[J]. 中国科学:物理学力学天文学, 2020, 50(9):129-151. TENG H H, YANG P F, ZHANG Y N, et al. Flow and combustion mechanism of oblique detonation engines[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2020, 50(9):129-151(in Chinese).
[12] 张少杰, 蔡晓东, 陈伟强, 等. 超声速气流中的爆震推进理论与研究进展[J]. 气体物理, 2018, 3(2):27-38. ZHANG S J, CAI X D, CHEN W Q, et al. Theory and research progress of detonation propulsion in supersonic flow[J]. Physics of Gases, 2018, 3(2):27-38(in Chinese).
[13] 严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 西安:西北工业大学出版社, 2005. YAN C J, FAN W. Principle and key technology of pulse detonation engine[M]. Xi'an:Northwestern Polytechnical University Press, 2005(in Chinese).
[14] EIDELMAN S, GROSSMANN W, LOTTATI I. Review of propulsion applications and numerical simulations of the pulsed detonation engine concept[J]. Journal of Propulsion and Power, 1991, 7(6):857-865.
[15] KAILASANATH K. Review of propulsion applications of detonation waves[J]. AIAA Journal, 2000, 38(9):1698-1708.
[16] ROY G D, FROLOV S M, BORISOV A A, et al. Pulse detonation propulsion:Challenges, current status, and future perspective[J]. Progress in Energy and Combustion Science, 2004, 30(6):545-672.
[17] MCMANUS K, FURLONG E, LEYVA I, et al. MEMS-based pulse detonation engine for small-scale propulsion applications:AIAA-2001-3469[R]. Reston:AIAA,2001.
[18] LANDRY K, SHEHADEH R, BOUVET N, et al. Effect of operating frequency on PDE driven ejector thrust performance:AIAA-2005-3832[R]. Reston:AIAA, 2005.
[19] WANG K, FAN W. Efforts on high-frequency pulse detonation engines[J]. Journal of Propulsion and Power, 2016, 33(1):17-28.
[20] VALAEV A A, ZHIMERIN D G, MIRONOV E A. Method and apparatus for intermittent combustion:US3954380A[P]. 1976.
[21] SHIMO M, HEISTER S D. Multicyclic-detonation-initiation studies in valveless pulsed detonation combustors[J]. Journal of Propulsion and Power, 2008, 24(2):336-344.
[22] SHIMO M, MEYER S. Valveless pulsed detonation combustor:US7758334B2[P]. 2010.
[23] WANG K, FAN W, LU W, et al. Study on a liquid-fueled and valveless pulse detonation rocket engine without the purge process[J]. Energy, 2014, 71:605-614.
[24] ZHANG Q B, FAN W, WANG K, et al. Impact of nozzles on a valveless pulse detonation rocket engine without the purge process[J]. Applied Thermal Engineering, 2016, 100:1161-1168.
[25] MATSUOKA K, TAKI H, KAWASAKI A, et al. Semi-valveless pulse detonation cycle at a kilohertz-scale operating frequency[J]. Combustion and Flame, 2019, 205:434-440.
[26] ENDO T. Thermal spray by pulsed detonations[C]//2013 International Workshop on Detonation for Propulsion. Wright-Patterson AFB:Air Force Research Laboratory, 2013.
[27] LU W, FAN W, WANG K, et al. Operation of a liquid-fueled and valveless pulse detonation rocket engine at high frequency[J]. Proceedings of the Combustion Institute, 2017, 36(2):2657-2664.
[28] 王可. 高频脉冲爆震火箭发动机关键技术研究[D]. 西安:西北工业大学, 2014. WANG K. Investigations on key technologies of a high-frequency pulse detonation rocket engine[D]. Xi'an:Northwestern Polytechnical University, 2014.
[29] WANG K, FAN W, LU W, et al. One method to increase the operating frequency of pulse detonation rocket engines[J]. Journal of Propulsion and Power, 2014, 30(2):518-522.
文章导航

/