激波/边界层干扰机理与控制专栏

高分辨率激波/边界层干扰时间演化过程分析

  • 陆小革 ,
  • 易仕和 ,
  • 何霖 ,
  • 全鹏程 ,
  • 冈敦殿
展开
  • 国防科技大学 空天科学学院, 长沙 410073

收稿日期: 2021-07-23

  修回日期: 2022-01-11

  网络出版日期: 2021-09-08

基金资助

国家重点研发计划(2019YFA0405300);国家重大科研仪器研制项目(11527802);国家自然科学基金重大研究计划(91752102,11832018)

Time evolution process of high resolution shock wave/turbulent boundary layer interaction

  • LU Xiaoge ,
  • YI Shihe ,
  • HE Lin ,
  • QUAN Pengcheng ,
  • GANG Dundian
Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2021-07-23

  Revised date: 2022-01-11

  Online published: 2021-09-08

Supported by

National Key R&D Program of China (2019YFA0405300); National Project for Research and Development of Major Scientific Instruments of China (11527802); Major Research Plan of the National Natural Science Foundation of China (91752102,11832018)

摘要

采用基于纳米示踪的平面激光散射(NPLS)技术,探索了流场超高帧频成像测试研究的试验系统,主要解决了多个单脉冲激光器并联后的稳定性和合束、阵列CCD相机的整体设计和布局以及测试系统的同步精确控制等问题,通过对系统的时序和分系统调试,实现了测试系统的精确控制。基于此系统,在单位雷诺数为6.30×106/m的条件下,在马赫数为3.4的超声速低噪声风洞中开展了θ=20°激波发生器入射激波与来流壁面湍流边界层干扰相关试验研究。在试验条件下获得了序列连续时间相关的激波与湍流边界层干扰的瞬态流场精细结构图像,并分析了其流场结构的时空演化特性。

本文引用格式

陆小革 , 易仕和 , 何霖 , 全鹏程 , 冈敦殿 . 高分辨率激波/边界层干扰时间演化过程分析[J]. 航空学报, 2022 , 43(1) : 626147 -626147 . DOI: 10.7527/S1000-6893.2021.26147

Abstract

In this paper, a test system based on the Nano-tracer Planar Laser Scattering(NPLS) technique for studying time evolution of unsteady flow structures is developed to solve the problems of stability and beam combination after parallel connection of multiple monopulse lasers, the overall design and layout of array CCD cameras, and the synchronous and accurate control of the test system. Based on this system, the experimental study on the interactions between the incident shock wave of θ=20° shock generator and the turbulent boundary layer of the incoming wall was performed. The experiments are performed in a Mach number 3.4 supersonic low-noise wind tunnel at the unit Reynolds number of 6.30×106/m. For the first time, eight frames of temporal-correlated fine structure images of transient flow field with shock wave/turbulent boundary layer interaction are obtained under the experimental conditions, and the spatio-temporal evolution characteristics of the flow structure are analyzed.

参考文献

[1] FERRI A. Experimental results with airfoils tested in the high-speed tunnel at Guidonia: NACA-TM-946[R]. Washington, D.C.: NACA, 1940.
[2] XUE L S, SCHRIJER F F J, VAN OUDHEUSDEN B W, et al. Theoretical study on regular reflection of shock wave-boundary layer interactions[J]. Journal of Fluid Mechanics, 2020, 899: A30.
[3] 童福林, 孙东, 袁先旭, 等. 超声速膨胀角入射激波/湍流边界层干扰直接数值模拟[J]. 航空学报, 2020, 41(3): 123328. TONG F L, SUN D, YUAN X X, et al. Direct numerical simulation of impinging shock wave/turbulent boundary layer interactions in a supersonic expansion corner[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 123328(in Chinese).
[4] TONG F L, SUN D, LI X L. Direct numerical simulation of impinging shock wave and turbulent boundary layer interaction over a wavy-wall[J]. Chinese Journal of Aeronautics, 2021, 34(5): 350-363.
[5] WU M W, MARTÍN M P. Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data[J]. Journal of Fluid Mechanics, 2008, 594: 71-83.
[6] ANDREOPOULOS J, MUCK K C. Some new aspects of the shock-wave/boundary-layer interaction in compression-ramp flows[J]. Journal of Fluid Mechanics, 1987, 180: 405-428.
[7] PIROZZOLI S, GRASSO F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25[J]. Physics of Fluids, 2006, 18(6): 065113.
[8] 姚瑶, 高波. 入射激波边界层干扰分离流场结构研究[J]. 空气动力学学报, 2019, 37(5): 740-747, 769. YAO Y, GAO B. Flow structure of incident shock wave boundary layer interaction with separation[J]. Acta Aerodynamica Sinica, 2019, 37(5): 740-747, 769(in Chinese).
[9] GUO S G, WU Y, LIANG H. Strong interactions of incident shock wave with boundary layer along compression corner[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3149-3157.
[10] 张悦, 谭慧俊, 王子运, 等. 进气道内激波/边界层干扰及控制研究进展[J]. 推进技术, 2020, 41(2): 241-259. ZHANG Y, TAN H J, WANG Z Y, et al. Progress of shock wave/boundary layer interaction and its control in inlet[J]. Journal of Propulsion Technology, 2020, 41(2): 241-259(in Chinese).
[11] 王刚, 文波, 张扣立, 等. "人字形小肋"对激波/边界层干扰的影响研究[J]. 宇航学报, 2020, 41(1): 27-34. WANG G, WEN B, ZHANG K L, et al. Effects of herringbone riblets on shock wave boundary layer interactions[J]. Journal of Astronautics, 2020, 41(1): 27-34(in Chinese).
[12] ZHAO Y X, YI S H, HE L, et al. The experimental study of interaction between shock wave and turbulence[J]. Chinese Science Bulletin, 2007, 52(10): 1297-1301.
[13] 赵玉新. 超声速混合层时空结构的实验研究[D]. 长沙:国防科技大学, 2008. ZHAO Y X. Experimental investigation of spatiotemporal structures of supersonic mixing layer[D]. Changsha: National University of Defense Technology, 2008(in Chinese).
[14] 何霖, 易仕和, 陆小革. 超声速湍流边界层密度场特性[J]. 物理学报, 2017, 66(2): 024701. HE L, YI S H, LU X G. Experimental study on the density characteristics of a supersonic turbulent boundary layer[J]. Acta Physica Sinica, 2017, 66(2): 024701(in Chinese).
[15] 何霖. 超声速边界层及激波与边界层相互作用的实验研究[D]. 长沙: 国防科技大学, 2011. HE L. Experimental investigation of supersonic boundary layer and shock wave/boundary layer interaction[D]. Changsha: National University of Defense Technology, 2011(in Chinese).
[16] LU X G, YI S H, HE L, et al. Experimental study on unsteady characteristics of shock and turbulent boundary layer interactions[J]. Fluid Dynamics, 2020, 55(4): 566-577.
[17] 武宇, 易仕和, 陈植, 等. 超声速压缩拐角与激波边界层干扰流动显示的实验研究[C]//第十六届全国激波与激波管学术会议, 2014: 499-504. WU Y, YI S H, CHEN Z, et al. Experimental studies on flow visualization of supersonic flow over compression ramp and shock wave boundary layer interaction[C]//The 16th National Symposium on Shock Wave and Shock Tube, 2014: 499-504(in Chinese).
[18] 全鹏程, 易仕和, 武宇, 等. 激波与层流/湍流边界层相互作用实验研究[J]. 物理学报, 2014, 63(8): 243-247. QUAN P C, YI S H, WU Y, et al. Experimental investigation of interactions between laminar or turbulent boundary layer and shock wave[J]. Acta Physica Sinica, 2014, 63(8): 243-247(in Chinese).
[19] HE L, LU X G. Visualization of the shock wave/boundary layer interaction using polarization imaging[J]. Journal of Visualization, 2020, 23(5): 839-850.
[20] 何霖. 直连式超声速风洞与"超-超"混合层风洞的设计和实验研究[D]. 长沙: 国防科技大学, 2006. HE L. The design and experimental studies of supersonic straight through wind tunnel and "supersonic-supersonic" mixing layer wind tunnel[D]. Changsha: National University of Defense Technology, 2006(in Chinese).
[21] LU X G, YI S H, HE L, et al. Experimental study on time evolution of shock wave and turbulent boundary layer interactions[J]. Journal of Applied Fluid Mechanics, 2020, 13(6): 1769-1780.
[22] ZHAO Y X, YI S H, TIAN L F, et al. Supersonic flow imaging via nanoparticles[J]. Science in China Series E: Technological Sciences, 2009, 52(12): 3640-3648.
文章导航

/