流体力学与飞行力学

跨声速压气机湿压缩性能及流动特性

  • 安利平 ,
  • 王昊 ,
  • 王掩刚 ,
  • 朱自环
展开
  • 1. 西北工业大学 动力与能源学院, 西安 710072;
    2. 中国航发四川燃气涡轮研究院, 成都 610500

收稿日期: 2021-06-25

  修回日期: 2021-07-20

  网络出版日期: 2021-09-08

基金资助

国家自然科学基金(51906205);陕西省自然科学基础研究计划(2019JQ-620)

Wet compression performance and flow characteristics of transonic compressor

  • AN Liping ,
  • WANG Hao ,
  • WANG Yangang ,
  • ZHU Zihuan
Expand
  • 1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AECC Sichuan Gas Turbine Establishment, Chengdu 610500, China

Received date: 2021-06-25

  Revised date: 2021-07-20

  Online published: 2021-09-08

Supported by

National Natural Science Foundation of China (51906205); Natural Science Basic Research Plan in Shaanxi Province (2019JQ-620)

摘要

以某跨声速压气机为研究对象, 采用CFD技术结合欧拉-拉格朗日法对进口均匀喷雾压气机气液两相流场进行数值模拟, 研究了不同喷湿条件(液滴粒径和喷湿量)对压气机性能及稳定边界的影响规律, 并通过喷湿前后转子进/出口速度三角形、轮缘功及温-熵图过程线解释了性能变化机理。结果表明:湿压缩能够提升压气机的压比和效率, 但在喷湿前后不同的工况对比条件下, 湿压缩对压气机耗功的影响有不同的趋势——在等流量条件下湿压缩提升了压气机比耗功, 在等压比条件下湿压缩能够降低压气机比耗功;喷水后压气机失速流量增大, 且失速流量的增大程度跟压比升高的程度呈正相关性;在等流量条件下, 液滴蒸发冷却作用会降低转子出口气流温度, 使出口气流密度提高、轴向速度降低, 引起扭速和轮缘功增大, 这是等流量下压气机级压比升高的主要原因;另外, 液滴粒径越小, 蒸发冷却效果越显著, 导致压气机压比、耗功等提升的效果越强;大粒径液滴由于蒸发冷却作用较弱, 而液滴破碎效应较强, 会带来额外的流动损失, 导致压气机效率下降。

本文引用格式

安利平 , 王昊 , 王掩刚 , 朱自环 . 跨声速压气机湿压缩性能及流动特性[J]. 航空学报, 2022 , 43(9) : 126024 -126024 . DOI: 10.7527/S1000-6893.2021.26024

Abstract

In this paper, the CFD technology combined with Euler-Lagrange method is used to simulate the gas-liquid flow field in a transonic compressor under inlet uniform fogging. The influence of different fogging conditions (droplet size and spray flow rate) on performance and stability boundary of the compressor is studied. The mechanism of performance variation is explained by the change of rotor inlet/outlet velocity triangle, specific work and process lines on temperature-entropy diagram. The results show that wet compression can improve the pressure ratio and efficiency of the compressor. However, the influence of wet compression on power consumption of the compressor has different trend under different comparison conditions. Under the condition of equal mass flow, wet compression can increase the specific work, while under the condition of equal pressure ratio, wet compression can reduce the specific work. The stall flow rate increases after fogging, and the increase degree of stall flow rate is positively correlated with the rise of pressure ratio. Under the condition of equal flow rate, the evaporative and cooling effect of the droplet can reduce the temperature of the air flow at outlet, causing increase of air density and decrease of axial velocity, and finally leading to the enhancement of the torsion speed and the specific work of the rotor. This is the main reason for the rise of compressor stage pressure ratio under the condition of equal flow rate. In addition, the smaller the droplet size is, the more significant the evaporative cooling effect is, and the stronger the effect of improving the compressor pressure ratio and power consumption is. Large droplets have weak evaporative cooling effect and strong droplet breakup effect, which will bring additional flow loss and reduce compressor efficiency.

参考文献

[1] ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525798 (in Chinese). 左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报, 2021, 42(8): 525798.
[2] BIANCHI M, MELINO F, PERETTO A, et al. Influence of water droplet size and temperature on wet compression: GT2007-27458[R]. New York: ASEM, 2007.
[3] ZHENG Q, SUN Y F, LI S Y, et al. Thermodynamic analyses of wet compression process in the compressor of gas turbine: GT2002-30590[R]. New York: ASEM, 2002.
[4] LIU J X, YU X J, MENG D J, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 423796 (in Chinese). 刘佳鑫, 于贤君, 孟德君, 等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报, 2021, 42(2): 423796.
[5] CHAKER M, MEHER-HOMJI C B. Gas turbine power augmentation: Parametric study relating to fog droplet size and its influence on evaporative efficiency[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(9): 092001.
[6] KLEINSCHMIDT R. Value of wet compression in gas-turbine cycles[J]. Mechanical Engineering, 1947, 69(2): 115-116.
[7] HORLOCK J H. Compressor performance with water injection: 2001-GT-0343[R]. New York: ASME, 2001.
[8] MYOREN C, TAKAHASHI Y, YAGI M, et al. Evaluation of axial compressor characteristics under overspray condition: GT2013-95402[R]. New York: ASME, 2013.
[9] DE LUCIA M, LANFRANCHI C, BOGGIO V. Benefits of compressor inlet air cooling for gas turbine cogeneration plants[J]. Journal of Engineering for Gas Turbines and Power, 1996, 118(3): 598-603.
[10] HILL P G. Aerodynamic and thermodynamic effects of coolant injection on axial compressors[J]. Aeronautical Quarterly, 1963, 14(4): 331-348.
[11] YOUNG J. The fundamental equations of gas-droplet multiphase flow[J]. Multiphase Flow, 1995, 21(2): 175-191.
[12] ZHENG Q, SUN Y F, LI S Y, et al. Thermodynamic analyses of wet compression process in the compressor of gas turbine[J]. Journal of Turbomachinery, 2003, 125(3): 489-496.
[13] ABDELWAHAB A. An investigation of the use of wet compression in industrial centrifugal compressors[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York: ASME, 2006: 741-750.
[14] WHITE A J, MEACOCK A J. An evaluation of the effects of water injection on compressor performance[J]. Journal of Engineering for Gas Turbines and Power, 2004, 126(4): 748-754.
[15] BAGNOLI M, BIANCHI M, MELINO F, et al. Development and validation of a computational code for wet compression simulation of gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(1): 641-649.
[16] KIM K H, KO H J, PEREZ-BLANCO H. Analytical modeling of wet compression of gas turbine systems[J]. Applied Thermal Engineering, 2011, 31(5): 834-840.
[17] WANG T, KHAN J R. Overspray and interstage fog cooling in gas turbine compressor using stage-stacking scheme—Part Ⅰ: Development of theory and algorithm[J]. Journal of Thermal Science and Engineering Applications, 2010, 2(3): 031001.
[18] KHAN J R, WANG T. Implementation of a non-equilibrium heat transfer model in stage-stacking scheme to investigate overspray fog cooling in compressors[J]. International Journal of Thermal Sciences, 2013, 68: 63-78.
[19] SUN L X, ZHENG Q, LI Y J, et al. Understanding effects of wet compression on separated flow behavior in an axial compressor stage using CFD analysis[J]. Journal of Turbomachinery, 2011, 133(3): 031026.
[20] SUN L X, ZHENG Q, LI Y J, et al. Numerical simulation of a complete gas turbine engine with wet compression[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(1): 012002.
[21] LUO M C, ZHENG Q, SUN L X, et al. The effects of wet compression and blade tip water injection on the stability of a transonic compressor rotor[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(9): 092001.
[22] WANG T, KHAN J R. Discussion of some myths/features associated with gas turbine inlet fogging and wet compression[J]. Journal of Thermal Science and Engineering Applications, 2016, 8(2): 021001.
[23] REID L, MOORE R D. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively, and with design pressure ratio of 1.82: NASA TP-1338[R]. Washington, D.C. : NASA, 1978.
[24] SUN L X. Study on wet compression performance of gas turbine and droplet motion[D]. Harbin: Harbin Engineering University, 2012 (in Chinese). 孙兰昕. 燃气轮机湿压缩性能与水滴运动研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[25] LIN F, WEN X Y, LUAN K. A preliminary study of compressor wet compression characteristics and its calculation model[J]. Journal of Engineering for Thermal Energy and Power, 1998, 13(6): 402-405 (in Chinese). 林枫, 闻雪友, 栾坤. 压气机的湿压缩特性及计算模型初步研究[J]. 热能动力工程, 1998, 13(6): 402-405.
[26] LUO M C. The numerical simulation of inlet fogging effects on a transonic stage[D]. Harbin: Harbin Engineering University, 2011 (in Chinese). 罗铭聪. 进口加湿的跨音速压气机级气动性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
文章导航

/