涡桨飞机有/无动力降落构型的气动噪声预测
收稿日期: 2021-07-15
修回日期: 2021-08-03
录用日期: 2021-08-27
网络出版日期: 2021-09-06
基金资助
国家自然科学基金(11772261);陕西省自然科学基金(2023-JC-ZD-01)
Aero-acoustic prediction of turboprop models with and without propellers in landing configuration
Received date: 2021-07-15
Revised date: 2021-08-03
Accepted date: 2021-08-27
Online published: 2021-09-06
Supported by
National Natural Science Foundation of China(11772261);Natural Science Foundation of Shannxi Province(2023-JC-ZD-01)
以某双发涡桨飞机为对象,采用精细化笛卡尔网格与混合RANS/LES数值模拟,结合FW-H方程的声类比方法,对某涡桨飞机的有动力降落构型和无动力降落构型(均为1/6缩比模型)开展气动噪声预测与对比研究。通过对比分析近场流动结构、机身表面压力分布与压力脉动探测数据、Lamb矢量的散度分布和远场观测点噪声数据,发现对于无动力降落构型,翼尖、襟翼侧缘、襟翼连接件、襟翼与机身连接处等位置的表面压力脉动显著强于其他区域;对于有动力降落构型,除上述区域外,在螺旋桨滑流的干扰下,发动机舱、机翼前缘和襟翼表面压力脉动明显增大。远场噪声观测数据表明,采用的噪声预测方法不仅能够准确捕捉螺旋桨旋转噪声主频,还能够清晰观测到2倍、3倍及4倍谐频。最终结果显示,有动力降落构型的螺旋桨旋转噪声幅值最大,是最主要的噪声源。有动力降落构型相比于无动力降落构型的总声压级要高20 dB左右。因此,建议针对该涡桨飞机降落构型,其降噪设计重点应放在螺旋桨降噪优化设计方面。
关键词: 涡桨飞机; 螺旋桨噪声; FW-H声类比; 改进的延迟分离涡模拟(IDDES); 降落构型
王跃 , 宋文萍 , 宋敏华 , 韩忠华 , 张彦军 , 雷武涛 . 涡桨飞机有/无动力降落构型的气动噪声预测[J]. 航空学报, 2023 , 44(11) : 126110 -126110 . DOI: 10.7527/S1000-6893.2021.26110
In this study, a hybrid method combining hybrid RANS/LES simulation on the fine Cartesian mesh and FW-H acoustic analogy is proposed for aero-acoustic prediction of two turboprop models (1/6 scaled) in the landing configuration: one is the powered model with twin propellers, and the other is the unpowered model without propeller. By comparing the near-field flow structure, data of pressure distribution and pulsation on the fuselage surface, distribution of Lamb vector divergence, and noise data at the far-field observation point, it is found that the surface pressure pulsation at the wing tip, flap side edge, wing-flap connector and fuselage-flap connection part are stronger than that at other areas in the unpowered model. In contrast, the surface pressure pulsation at the engine compartment, the wing leading edge and the flap are amplified significantly under the interference of propeller slipstream in the powered model. Far-field noise observation data show that the noise prediction method used in this paper can accurately capture not only the main frequency of propeller rotation noise, but also the 2, 3 and 4 times harmonic frequencies. The final results show that the rotation noise generated by the propellers is the main noise source with the highest amplitude. The overall sound pressure level of the powered model is 20 dB higher than that of the unpowered model. Therefore, it is suggested that the noise reduction design of this turboprop aircraft should focus on noise reduction of the propeller.
1 | WILLIAMS J E F, HALL L H. Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane[J]. Journal of Fluid Mechanics, 1970, 40(4): 657-670. |
2 | FINK M R. Approximate prediction of airframe noise[J]. Journal of Aircraft, 1976, 13(11): 833-834. |
3 | WHITFIELD C E. NASA’s quiet aircraft technology project [C]∥24th International Congress of the Aeronautical Sciences, 2004. |
4 | BRUNET M, LAFAGE R, AUBRY S, et al. The Clean Sky programme: Environmental benefits at aircraft level: AIAA-2015-2390[R]. Reston: AIAA, 2015. |
5 | BOWN N, KNEPPER A. Aircraft and propulsion design requirements for the IMPACTA project: ITS 01675[R]. 2013. |
6 | 刘远强, 王艳冰, 项松, 等. 面向电动飞机应用的不同叶尖螺旋桨噪声特性[J]. 航空学报, 2021, 42(3): 624567. |
LIU Y Q, WANG Y B, XIANG S, et al. Noise characteristics of propellers with different blade tips for electric aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624567 (in Chinese). | |
7 | ZHANG Y F, CHEN H X, WANG K, et al. Aeroacoustic prediction of a multi-element airfoil using wall-modeled large-eddy simulation[J]. AIAA Journal, 2017, 55(12): 4219-4233. |
8 | GAO J H, LI X D, LIN D K. Numerical simulation of the 30P30N high-lift airfoil noise with spectral difference method[J]. AIAA Journal, 2020, 58(6): 2517-2532. |
9 | XIAO Z X, LIU J, LUO K Y, et al. Investigation of flows around a rudimentary landing gear with advanced detached-eddy-simulation approaches[J]. AIAA Journal, 2013, 51(1): 107-125. |
10 | 刘兴强, 黄文超, 李红丽. 某型飞机前起落架噪声特性研究[J]. 西北工业大学学报, 2016, 34(3): 456-459. |
LIU X Q, HUANG W C, LI H L. Research on noise characteristics for a nose landing gear[J]. Journal of Northwestern Polytechnical University, 2016, 34(3): 456-459 (in Chinese). | |
11 | 龙双丽, 聂宏, 薛彩军, 等. 飞机起落架气动噪声特性仿真与试验[J]. 航空学报, 2012, 33(6): 1002-1013. |
LONG S L, NIE H, XUE C J, et al. Simulation and experiment on aeroacoustic noise characteristics of aircraft landing gear[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1002-1013 (in Chinese). | |
12 | GAO J H, XU X, LI X D. Numerical simulation of supersonic twin-jet noise with high-order finite difference scheme: AIAA-2016-2938[R]. Reston: AIAA, 2016. |
13 | XU X H, HE J Y, LI X D, et al. 3-D jet noise prediction for separate flow nozzles with pylon interaction: AIAA-2015-0522[R].Reston: AIAA, 2015. |
14 | ZHAO L, QIAO W Y, JI L. Computational fluid dynamics simulation of sound propagation through a blade row[J]. The Journal of the Acoustical Society of America, 2012, 132(4): 2210-2217. |
15 | 韩忠华, 宋文萍, 乔志德. Kirchhoff方法在旋翼前飞噪声预测中的应用研究[J]. 空气动力学学报, 2004, 22(1): 47-51. |
HAN Z H, SONG W P, QIAO Z D. Aeroacoustic noise prediction of helicopter rotor in forward flight using Kirchhoff method[J]. Acta Aerodynamica Sinica, 2004, 22(1): 47-51 (in Chinese). | |
16 | 王阳, 徐国华, 招启军. 基于非结构网格CFD技术的旋翼气动噪声计算方法研究[J]. 空气动力学学报, 2011, 29(5): 559-566. |
WANG Y, XU G H, ZHAO Q J. Numerical method for predicting rotor aerodynamic noise based on unstructured-grid CFD technology[J]. Acta Aerodynamica Sinica, 2011, 29(5): 559-566 (in Chinese). | |
17 | 赵帅, 段卓毅, 李杰, 等. 涡桨飞机螺旋桨滑流气动干扰效应及流动机理[J]. 航空学报, 2019, 40(4): 122469. |
ZHAO S, DUAN Z Y, LI J, et al. Interference effects and flow mechanism of propeller slipstream for turboprop aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 122469 (in Chinese). | |
18 | 赵帅, 段卓毅, 李杰, 等. 螺旋桨旋转方向对飞机俯仰力矩特性的影响[J]. 航空学报, 2020, 41(8): 123619. |
ZHAO S, DUAN Z Y, LI J, et al. Effects of propeller rotation direction on pitching moment characteristics of aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 123619 (in Chinese). | |
19 | WANG M, FREUND J B, LELE S K. Computational prediction of flow-generated sound[J]. Annual Review of Fluid Mechanics, 2006, 38: 483-512. |
20 | SPALART P R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow, 2000, 21(3): 252-263. |
21 | SHUR M L, SPALART P R, STRELETS M K, et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow, 2008, 29(6): 1638-1649. |
22 | 宋文萍, 余雷, 韩忠华. 飞机机体气动噪声计算方法综述[J]. 航空工程进展, 2010, 1(2): 125-131. |
SONG W P, YU L, HAN Z H. Status of investigation on airframe noise computation[J]. Advances in Aeronautical Science and Engineering, 2010, 1(2): 125-131 (in Chinese). | |
23 | FARASSAT F, SUCCI G P. A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations[J]. Journal of Sound and Vibration, 1980, 71(3): 399-419. |
24 | 宋敏华, 宋文萍, 王跃, 等. 涡桨飞机缩比模型机体噪声预测研究[J]. 西北工业大学学报, 2021, 39(6): 1169-1178. |
SONG M H, SONG W P, WANG Y, et al. Noise prediction research of a scaled turboprop aircraft[J]. Journal of Northwestern Polytechnical University, 2021, 39(6): 1169-1178 (in Chinese). |
/
〈 |
|
〉 |