综述

大型复杂构件机器人加工稳定性研究进展

  • 廖文和 ,
  • 郑侃 ,
  • 孙连军 ,
  • 董松 ,
  • 张磊
展开
  • 南京理工大学 机械工程学院, 南京 210094

收稿日期: 2021-07-05

  修回日期: 2021-09-06

  网络出版日期: 2021-09-06

基金资助

国家自然科学基金(52075265,51861145405)

Review on chatter stability in robotic machining for large complex components

  • LIAO Wenhe ,
  • ZHENG Kan ,
  • SUN Lianjun ,
  • DONG Song ,
  • ZHANG Lei
Expand
  • School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2021-07-05

  Revised date: 2021-09-06

  Online published: 2021-09-06

Supported by

National Natural Science Foundation of China (52075265, 51861145405)

摘要

工业机器人正逐步应用于大型复杂构件的制造与装配领域,其加工稳定性是实现大型复杂构件高精、高效、高质量加工的基础,颤振抑制是实现机器人稳定加工的重要途径。与数控机床单一颤振类型不同,机器人加工颤振主要由再生型颤振和振型耦合型颤振构成,二者共同作用加剧了稳定性解析的复杂度。国内外学者在机器人加工颤振形成机理、颤振预测与控制等方面开展了理论与实验研究,并取得了诸多成果,但研究仍处于起步阶段。目前,机器人加工颤振产生机理尚不明确、稳定性理论解析方法尚不全面、颤振控制技术尚不成熟,工程应用尚未普及,加工稳定性研究的深度和广度仍有较大提升空间。为此,从机器人加工颤振机理、颤振规避方法、颤振抑制方法及加工稳定性应用案例分析4个方面对国内外文献进行了全面总结,并提出后续发展方向,可为大型复杂构件机器人加工稳定性的研究提供指导。

本文引用格式

廖文和 , 郑侃 , 孙连军 , 董松 , 张磊 . 大型复杂构件机器人加工稳定性研究进展[J]. 航空学报, 2022 , 43(1) : 26061 -026061 . DOI: 10.7527/S1000-6893.2021.26061

Abstract

Industry robots are widely applied to the manufacturing and assembly of large complex components. Its machining stability is the prerequisite and basis for accomplishing the high-precision, high-efficiency and high-quality production. Chatter suppression is an important way to realize the stable processing of robots. Unlike the single chatter type in CNC machine tools, robotic machining instability involves regenerative chatter and mode couple chatter mainly. As a result, the combined effect of the two increases the complexity of chatter stability analysis greatly. Currently, scholars at home and abroad have carried out theoretical and experimental research on robotic processing chatter formation mechanism, chatter prediction and control, and have achieved many results. However, it is still in its infancy. For example, the chatter mechanism is not clear, the analysis methods of stability are not comprehensive enough and engineering applications are not yet popular. Apart from this, the chatter control technology is also not mature. There is much more improvement in the depth and breadth of robotic stability investigation. Therefore, this article summarizes the domestic and foreign literature from four aspects such as robotic machining chatter mechanism, chatter avoidance, suppression method and typical application analysis. Finally, the follow-up development suggestions are proposed to guide the stability research of robotic machining large complex parts.

参考文献

[1] ZHU D H, FENG X Z, XU X H, et al. Robotic grinding of complex components:A step towards efficient and intelligent machiningNchallenges, solutions, and applications[J]. Robotics and Computer Integrated Manufacturing, 2020, 65: 101908.
[2] 王立凡. 大型薄壁构件镜像加工装备运动控制技术研究[D]. 大连: 大连理工大学, 2019: 1-5. WANG L F. Study on motion control of mirror milling equipment for large thin-walled parts[D]. Dalian: Dalian University of Technology, 2019: 1-5(in Chinese).
[3] 薛雷, 曾宏伟, 覃程锦, 等. 采用同步压缩变换和能量熵的机器人加工颤振监测方法[J]. 西安交通大学学报, 2019, 53(8): 24-30, 89. XUE L, ZENG H W, QIN C J, et al. A chatter monitoring method for robotic machining using synchro-squeezed transform and energy entropy[J]. Journal of Xi’an Jiaotong University, 2019, 53(8): 24-30, 89(in Chinese).
[4] 方强,李超,费少华, 等. 机器人镗孔加工系统稳定性分析[J]. 航空学报, 2016, 37(2): 727-737. FANG Q, LI C, FEI S H, et al. Stability analysis of robot boring system[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 727-737(in Chinese).
[5] 岳超. 工业机器人加工系统刚度特性分析及铣削稳定性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 1-2. YUE C. Research on stiffness characteristic and milling stability of industrial robot machining system[D].Harbin: Harbin Institute of Technology, 2020: 1-2(in Chinese).
[6] PENG Z L, ZHANG D Y, ZHANG X Y. Chatter stability and precision during high-speed ultrasonic vibration cutting of a thin-walled titanium cylinder[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3535-3549.
[7] LEE J, CHANG P H, JIN M L. An adaptive gain dynamics for time delay control improves accuracy and robustness to significant payload changes for robots[J]. IEEE Transactions on Industrial Electronics, 2020, 67(4): 3076-3085.
[8] BIAGIOTTI L, MORIELLO L, MELCHIORRI C. Improving the accuracy of industrial robots via iterative reference trajectory modification[J]. IEEE Transactions on Control Systems Technology, 2020, 28(3): 831-843.
[9] 石章虎, 何晓煦, 曾德标, 等. 基于误差相似性的移动机器人定位误差补偿[J]. 航空学报, 2020, 41(11): 428-439. SHI Z H, HE X X, ZENG D B, et al. Error compensation method for mobile robot positioning based on error similarity[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 428-439(in Chinese).
[10] 曾远帆, 廖文和, 田威. 面向精度补偿的工业机器人采样点多目标优化[J]. 机器人, 2017, 39(2): 239-248. ZENG Y F, LIAO W H, TIAN W. Multi-objective optimization of samples for industrial robot error compensation[J]. Robot, 2017, 39(2): 239-248(in Chinese).
[11] 倪鹤鹏. 机器人铣削加工轨迹规划与颤振稳定性研究[D]. 济南: 山东大学, 2019: 11-14. NI H P. Research on trajectory planning and chatter stability of robotic milling[D].Ji’nan: Shandong University, 2019: 11-14(in Chinese).
[12] PAN Z X, ZHANG H, ZHU Z Q, et al. Chatter analysis of robotic machining process[J]. Journal of Materials Processing Technology, 2006, 173(3): 301-309.
[13] TLUSTY J. Manufacturing processes and equipment[M]. Upper Saddle River: Prentice Hall, 1999: 223-225.
[14] ALTINTAS Y. Manufacturing automation:Metal cutting mechanics, machine tool vibrations, and CNC design[M]. Cambridge: Cambridge University Press, 2012: 145-148.
[15] YUAN L, PAN Z X, DING D H, et al. A review on chatter in robotic machining process regarding both regenerative and mode coupling mechanism[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(5): 2240-2251.
[16] 王战玺, 张晓宇, 李飞飞, 等. 机器人加工系统及其切削颤振问题研究进展[J]. 振动与冲击, 2017, 36(14): 147-155, 188. WANG Z X, ZHANG X Y, LI F F, et al. Review on the research developments of robot machining systems and cutting chatter behaviors[J]. Journal of Vibration and Shock, 2017, 36(14): 147-155, 188(in Chinese).
[17] ROUKEMA J C, ALTINTAS Y. Generalized modeling of drilling vibrations. Part I: Time domain model of drilling kinematics, dynamics and hole formation[J]. International Journal of Machine Toolsand Manufacture, 2007, 47(9): 1455-1473.
[18] GUO Y J, DONG H Y, WANG G F, et al. Vibration analysis and suppression in robotic boring process[J]. International Journal of Machine Tools and Manufacture, 2016, 101: 102-110.
[19] ZHENG Z P, JIN X, SUN Y W, et al. Prediction of chatter stability for enhanced productivity in parallel orthogonal turn-milling[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(9-10): 2377-2388.
[20] NAM S, HAYASAKA T, JUNG H, et al. Proposal of novel chatter stability indices of spindle speed variation based on its chatter growth characteristics[J]. Precision Engineering, 2020, 62: 121-133.
[21] WANG G F, DONG H Y, GUO Y J, et al. Chatter mechanism and stability analysis of robotic boring[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(1-4): 411-421.
[22] SUN L J, ZHENG K, LIAO W H, et al. Investigation on chatter stability of robotic rotary ultrasonic milling[J]. Robotics and Computer Integrated Manufacturing, 2020, 63: 101911.
[23] 隋翯, 张德远, 陈华伟, 等. 超声振动切削对耦合颤振的影响[J]. 航空学报, 2016, 37(5): 1696-1704. SUI H, ZHANG D Y, CHEN H W, et al. Influence of ultrasonic vibration cutting on mode-coupling chatter[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1696-1704(in Chinese).
[24] WAN M, MA Y C, ZHANG W H, et al. Study on the construction mechanism of stability lobes in milling process with multiple modes[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(1-4): 589-603.
[25] HE F X, LIU Y, LIU K. A chatter-free path optimization algorithm based on stiffness orientation method for robotic milling[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(9-12): 2739-2750.
[26] MOUSAVI S, GAGNOL V, BOUZGARROU B C, et al. Dynamic modeling and stability prediction in robotic machining[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(9-12): 3053-3065.
[27] CELIKAG H, OZTURK E, SIMS N D. Can mode coupling chatter happen in milling?[J]. International Journal of Machine Tools and Manufacture, 2021, 165: 103738.
[28] 伍健. 工业机器人不同姿态下的刚度与铣削颤振研究[D]. 长春: 吉林大学, 2020: 5-7. WU J. Research on the stiffness and milling chatter of industrial robot in different configurations[D]. Changchun: Jilin University, 2020: 5-7(in Chinese).
[29] LOPES A M. Complete dynamic modelling of a moving base 6-dof parallel manipulator[J]. Robotica, 2010, 28(5): 781-793.
[30] MOHAN A, SINGH S P, SAHA S K. A cohesive modeling technique for theoretical and experimental estimation of damping in serial robots with rigid and flexible links[J]. Multibody System Dynamics, 2010, 23(4): 333-360.
[31] 李宇庭. 机器人多轴铣削刀尖频响快速预测及颤振稳定性分析[D]. 武汉: 华中科技大学, 2018: 8-10. LI Y T. Rapid dynamics prediction of tool tip and analysis of the chatter stability in robotic milling system[D]. Wuhan: Huazhong University of Science and Technology, 2018: 8-10(in Chinese).
[32] WANG X Y, MILLS J K. Experimental identification of configuration dependent linkage vibration in a parallel robot using smart material actuators and sensors[J]. Transactions of the Canadian Society for Mechanical Engineering, 2007, 31(1): 57-73.
[33] BEHI F, TESAR D. Parametric identification for industrial manipulators using experimental modal analysis[J]. IEEE Transactions on Robotics and Automation, 1991, 7(5): 642-652.
[34] QIN Z K, BARON L, BIRGLEN L. A new approach to the dynamic parameter identification of robotic manipulators[J]. Robotica, 2010, 28(4): 539-547.
[35] 静大海, 刘晓平. 机器人关节面时变物理参数在线识别的谐波传播法[J]. 机械工程学报, 2009, 45(3): 296-301. JING D H, LIU X P. On-lineidentification of time-varying physical parameters of robot joint based on harmonic propagation[J]. Journal of Mechanical Engineering, 2009, 45(3): 296-301(in Chinese).
[36] 沈孝栋. 制孔机器人在钻削力作用下变形与振动的研究[D]. 南京: 南京航空航天大学, 2015: 16-20. SHEN X D. Thedeformation and vibration simulations of drilling robot when suffering drilling forces[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 16-20(in Chinese).
[37] ALTINTAS Y, STEPAN G, BUDAK E, et al. Chatter stability of machining operations[J]. Journal of Manufacturing Science and Engineering, 2020, 142(11): 110801.
[38] LI J, LI B, SHEN N Y, et al. Effect of the cutter path and the workpiece clamping position on the stability of the robotic milling system[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9-12): 2919-2933.
[39] SUN L J, LIAO W H, ZHENG K, et al. Stability analysis of robotic longitudinal-torsional composite ultrasonic milling[J]. Chinese Journal of Aeronautics, (2021-06-05)[2021-08-21]. https://doi.org/10.1016/j.cja.2021.06.006.
[40] RAFIEIAN F, HAZEL B, LIU Z H. Regenerative instability of impact-cutting material removal in the grinding process performed by a flexible robot arm[J]. Procedia CIRP, 2014, 14: 406-411.
[41] CEN L J, MELKOTE S N. CCT-based mode coupling chatter avoidance in robotic milling[J]. Journal of Manufacturing Processes, 2017, 29: 50-61.
[42] CORDES M, HINTZE W, ALTINTAS Y. Chatter stability in robotic milling[J]. Robotics and Computer Integrated Manufacturing, 2019, 55: 11-18.
[43] SHI M R, QIN X D, LI H, et al. Cutting force and chatter stability analysis for PKM-based helical milling operation[J]. The International Journal of Advanced Manufacturing Technology, 2020, 111(11-12): 3207-3224.
[44] ZHAO X, ZHENG L Y, LIU X Y, et al. Chatter stability prediction for multi-robots collaborative milling system[J]. Procedia CIRP, 2020, 93: 856-861.
[45] SAFI S M, AMIRABADI H, LIRABI I, et al. A new approach for chatter prediction in robotic milling based on signal processing in time domain[J]. Applied Mechanics and Materials, 2013, 346: 45-51.
[46] MEJRI S, GAGNOL V, LE T P, et al. Dynamic characterization of machining robot and stability analysis[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(1-4): 351-359.
[47] 刘宇, 何凤霞. 基于概率方法的机器人铣削加工颤振稳定性研究[J]. 东北大学学报(自然科学版), 2019, 40(5): 683-687. LIU Y, HE F X. Study on the chatter stability of robotic milling based on the probability method[J]. Journal of Northeastern University (Natural Science), 2019, 40(5): 683-687(in Chinese).
[48] CELIKAG H, SIMS N D, OZTURK E. Chatter suppression in robotic milling by control of configuration dependent dynamics[J]. Procedia CIRP, 2019, 82: 521-526.
[49] TOH C K. Vibration analysis in high speed rough and finish milling hardened steel[J]. Journal of Sound and Vibration, 2004, 278(1-2): 101-115.
[50] ZHANG Z, LI H G, MENG G, et al. Chatter detection in milling process based on the energy entropy of VMD and WPD[J]. International Journal of Machine Tools and Manufacture, 2016, 108: 106-112.
[51] NAIR U, KRISHNA B M, NAMBOOTHIRI V N N, et al. Permutation entropy based real-time chatter detection using audio signal in turning process[J]. The International Journal of Advanced Manufacturing Technology, 2010, 46(1-4): 61-68.
[52] THALER T, POTOČNIK P, BRIC I, et al. Chatter detection in band sawing based on discriminant analysis of sound features[J]. Applied Acoustics, 2014, 77: 114-121.
[53] LAMRAOUI M, THOMAS M, EL BADAOUI M. Cyclostationarity approach for monitoring chatter and tool wear in high speed milling[J]. Mechanical Systems and Signal Processing, 2014, 44(1-2): 177-198.
[54] LIU C F, ZHU L D, NI C B. Chatter detection in milling process based on VMD and energy entropy[J]. Mechanical Systems and Signal Processing, 2018, 105: 169-182.
[55] SHAO Y M, DENG X, YUAN Y L, et al. Characteristic recognition of chatter mark vibration in a rolling mill based on the non-dimensional parameters of the vibration signal[J]. Journal of Mechanical Science and Technology, 2014, 28(6): 2075-2080.
[56] LIU Y, WANG X F, LIN J, et al. Early chatter detection in gear grinding process using servo feed motor current[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9-12): 1801-1810.
[57] LIU H Q, CHEN Q H, LI B, et al. On-line chatter detection using servo motor current signal in turning[J]. Science China Technological Sciences, 2011, 54(12): 3119-3129.
[58] TANSEL I N, LI M, DEMETGUL M, et al. Detecting chatter and estimating wear from the torque of end milling signals by using Index Based Reasoner (IBR)[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(1-4): 109-118.
[59] TAYLOR F W. On the art of cutting metals[M]. New York: The American Society of Mechanical Engineers, 1907: 69-72.
[60] 王志学, 刘献礼, 李茂月, 等. 切削加工颤振智能监控技术[J]. 机械工程学报, 2020, 56(24): 1-23. WANG Z X, LIU X L, LI M Y, et al. Intelligent monitoring and control technology of cutting chatter[J]. Journal of Mechanical Engineering, 2020, 56(24): 1-23(in Chinese).
[61] ZHU Z R, TANG X W, CHEN C, et al. High precision and efficiency robotic milling of complex parts: Challenges, approaches and trends[J]. Chinese Journal of Aeronautics, (2021-01-12)[2021-08-21]. https://doi.org/10.1016/j.cja.2020.12.030.
[62] 董辉跃, 吴杨宝, 郭英杰, 等. 机器人精镗飞机交点孔的颤振分析与识别[J]. 浙江大学学报(工学版), 2018, 52(8): 1517-1525. DONG H Y, WU Y B, GUO Y J, et al. Chatter analysis and identification in robotic fine boring of aircraft intersection holes[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(8): 1517-1525(in Chinese).
[63] WANG G F, DONG H Y, GUO Y J, et al. Early chatter identification of robotic boring process using measured force of dynamometer[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(1-4): 1243-1252.
[64] CEN L J, MELKOTE S N, CASTLE J, et al. A method for mode coupling chatter detection and suppression in robotic milling[J]. Journal of Manufacturing Science and Engineering, 2018, 140(8): 081015.
[65] WANG Y, ZHANG M K, TANG X W, et al. A kMap optimized VMD-SVM model for milling chatter detection with an industrial robot[J]. Journal of Intelligent Manufacturing, 2021: 1-20.
[66] 王桃章, 王宇, 王宇斐, 等. 深度学习在机器人加工颤振辨识中的应用[J]. 机械科学与技术, 2021, 40(2): 188-192. WANG T Z, WANG Y, WANG Y F, et al. Application of deep learning in robot milling chattering identification[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 188-192(in Chinese).
[67] TAO J F, QIN C J, LIU C L. A synchroextracting-based method for early chatter identification of robotic drilling process[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1-4): 273-285.
[68] TAO J F, QIN C J, XIAO D Y, et al. Timely chatter identification for robotic drilling using a local maximum synchrosqueezing-based method[J]. Journal of Intelligent Manufacturing, 2020, 31(5): 1243-1255.
[69] TAO J F, QIN C J, XIAO D Y, et al. A pre-generated matrix-based method for real-time robotic drilling chatter monitoring[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2755-2764.
[70] WANG H, ZHAO W, LI B, et al. Dynamic analysis and robust reliability design of pan mechanism for a cooking robot[C]//2009 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway: IEEE Press, 2009: 1996-2001.
[71] GUO Y J, DONG H Y, WANG G F, et al. Vibration analysis and suppression in robotic boring process[J]. International Journal of Machine Tools and Manufacture, 2016, 101: 102-110.
[72] VON DRIGALSKI F, HAFI L E, ELJURI P M U, et al. Vibration-reducing end effector for automation of drilling tasks in aircraft manufacturing[J]. IEEE Robotics and Automation Letters, 2017, 2(4): 2316-2321.
[73] CHEN F, ZHAO H. Design of eddy current dampers for vibration suppression in robotic milling[J]. Advances in Mechanical Engineering, 2018, 10(11): 1-15.
[74] YUAN L, SUN S S, PAN Z X, et al. Mode coupling chatter suppression for robotic machining using semi-active magnetorheological elastomers absorber[J]. Mechanical Systems and Signal Processing, 2019, 117: 221-237.
[75] 郭伟华. 机器人旋转超声铣削铝合金工艺实验研究[D]. 南京: 南京理工大学, 2018: 28-39. GUO W H. Experimental research on rotating ultrasonic milling aluminum alloy by robot[D]. Nanjing: Nanjing University of Science and Technology, 2018: 28-39(in Chinese).
[76] 郑侃, 廖文和, 孙连军, 等. 机器人纵振与纵扭超声铣削稳定性对比研究[J]. 机械工程学报, 2021, 57(7): 10-17. ZHENG K, LIAO W H, SUN L J, et al. Comparative study on stability of robotic longitudinal vibration and longitudinal-torsional ultrasonic milling[J]. Journal of Mechanical Engineering, 2021, 57(7): 10-17(in Chinese).
[77] DONG S, ZHENG K, LIAO W H. Stability of lateral vibration in robotic rotary ultrasonic drilling[J]. International Journal of Mechanical Sciences, 2018, 145: 346-352.
[78] JI W, WANG L H. Industrial robotic machining: A review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1-4): 1239-1255.
[79] 连学军. 面向大型风电叶片的机器人阻抗控制顺应打磨研究[D]. 武汉: 华中科技大学, 2017: 49-61. LIAN X J. The research of robot adaptable grinding large wind blade by impedance control[D].Wuhan: Huazhong University of Science and Technology, 2017: 49-61(in Chinese).
[80] SHENG X J, ZHANG X. Fuzzy adaptive hybrid impedance control for mirror milling system[J]. Mechatronics, 2018, 53: 20-27.
[81] 杨一帆. 基于阻抗控制的弱刚性构件双机器人协同磨抛技术研究[D]. 武汉: 华中科技大学, 2019: 22-42. YANG Y F. Research on cooperative grinding technology for weak rigid workpiece with dual-manipulators based on impendence control[D].Wuhan: Huazhong University of Science and Technology, 2019: 22-42(in Chinese).
[82] ZAEH M F, ROESCH O. Improvement of the static and dynamic behavior of a milling robot[J]. International Journal of Automation Technology, 2015, 9(2): 129-133.
[83] NGUYEN V, JOHNSON J, MELKOTE S. Active vibration suppression in robotic milling using optimal control[J]. International Journal of Machine Tools and Manufacture, 2020, 152: 103541.
[84] WU H P, WANG Y B, LI M, et al. Chatter suppression methods of a robot machine for ITER vacuum vessel assembly and maintenance[J]. Fusion Engineering and Design, 2014, 89(9-10): 2357-2362.
[85] 刘海涛. 工业机器人的高速高精度控制方法研究[D]. 广州: 华南理工大学, 2012: 30-47. LIU H T. Research on high-speed and high-precision controlof industrial robots[D]. Guangzhou: South China University of Technology, 2012: 30-47(in Chinese).
[86] WANG Q L, WANG W, ZHENG L Y, et al. Force control-based vibration suppression in robotic grinding of large thin-wall shells[J]. Robotics and Computer Integrated Manufacturing, 2021, 67: 102031.
[87] CHEN F, ZHAO H, LI D W, et al. Contact force control and vibration suppression in robotic polishing with a smart end effector[J]. Robotics and Computer Integrated Manufacturing, 2019, 57: 391-403.
[88] 岳克双. 基于六维力传感器的协作型六自由度机器人控制系统研究[D]. 秦皇岛: 燕山大学, 2017: 76-91. YUE K S. Research on cooperative 6-DOF robot control system based on six-axis force sensor[D].Qinhuangdao: Yanshan University, 2017: 76-91(in Chinese).
[89] 邱磊. 发动机叶片表面的机器人精密磨削加工[D]. 杭州: 浙江工业大学, 2019: 3-8. QIU L. Robotic precision grinding of engine blade surface[D]. Hangzhou: Zhejiang University of Technology, 2019: 3-8(in Chinese).
[90] 余汉林. 面向叶片机器人砂带磨抛加工的主被动力控制技术研究[D]. 武汉: 华中科技大学, 2018: 45-65. YU H L. Theresearch on robotic belt grinding of blade with combination of active and passive compliant force control technology[D]. Wuhan: Huazhong University of Science and Technology, 2018: 45-65(in Chinese).
[91] 郭英杰. 基于工业机器人的飞机交点孔精镗加工关键技术研究[D]. 杭州: 浙江大学, 2016: 92-101. GUO Y J. Study on key techniques of aircraft intersection holes fine boring based on industrial robot[D]. Hangzhou: Zhejiang University, 2016: 92-101(in Chinese).
[92] 王桂锋. 工业机器人精镗飞机交点孔颤振研究及其数值模拟分析[D]. 杭州: 浙江大学, 2017: 1-3. WANG G F. Study on chatter performance of aircraft intersection holes fine boring and its numerical simulation analysis[D]. Hangzhou: Zhejiang University, 2017: 1-3(in Chinese).
[93] DONG S, LIAO W H, ZHENG K, et al. Investigation on exit burr in robotic rotary ultrasonic drilling of CFRP/aluminum stacks[J]. International Journal of Mechanical Sciences, 2019, 151: 868-876.
文章导航

/