电子电气工程与控制

高阶微分反馈控制及在四旋翼飞行器中的应用

  • 李霞 ,
  • 齐国元 ,
  • 郭曦彤 ,
  • 赵旭
展开
  • 1. 天津工业大学 机械工程学院, 天津 300387;
    2. 天津工业大学 天津市电气装备智能控制重点实验室, 天津 300387

收稿日期: 2021-07-02

  修回日期: 2021-07-31

  网络出版日期: 2021-09-06

基金资助

国家自然科学基金(61873186)

High-order differential feedback control and its application in quadrotor UAV

  • LI Xia ,
  • QI Guoyuan ,
  • GUO Xitong ,
  • ZHAO Xu
Expand
  • 1. School of Mechanical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
    2. Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tianjin Polytechnic University, Tianjin 300387, China

Received date: 2021-07-02

  Revised date: 2021-07-31

  Online published: 2021-09-06

Supported by

National Natural Science Foundation of China (61873186)

摘要

高阶微分反馈控制是不依赖系统精确模型的控制策略,采用控制滤波器间接补偿系统的未知模型。但其中的高阶微分器没有用来估计系统的未知模型函数,采用的是间接补偿未知模型函数方案。改进了高阶微分器,将控制输入引入其中,既能实时估计非线性模型中的未知函数,也能估计系统输出及参考输入的微分信息。对比分析了改进的高阶微分器和扩张状态观测器所估计的未知函数的收敛性,证明前者的型别比后者高一个类型。应用估计的微分和模型函数设计了新的高阶微分反馈控制算法,该方案能够抑制未知扰动,并成功地应用于四旋翼飞行器(QUAV)姿态系统的控制。应用Lyapunov函数从理论上证明了闭环系统的稳定性。在基于Pixhawk的控制测试平台实验中,分别采用改进的高阶微分反馈控制、PID控制、自抗扰控制和传统的高阶微分反馈控制方案,测试四旋翼飞行器对不同参考姿态的跟踪性能和抗扰性能。结果表明,所提出的改进高阶微分反馈控制方案,在暂态性能,稳态跟踪精度和抗干扰鲁棒性方面,大幅度优越于其他方案。

本文引用格式

李霞 , 齐国元 , 郭曦彤 , 赵旭 . 高阶微分反馈控制及在四旋翼飞行器中的应用[J]. 航空学报, 2022 , 43(12) : 326047 -326047 . DOI: 10.7527/S1000-6893.2021.26047

Abstract

The high-order differential feedback controller is a control scheme inddepent of the precise model of the system. It indirectly compensates for the system unknown model function through a control filter. However, the high-order differentiator has not been used to estimate the system unknown model function, which is indirectly compensated. In this paper, an improved high-order differentiator is proposed by introducing control input information, which can estimate the unknown functions in nonlinear models and the differential information of system output and reference input in real-time. The convergence of the unknown model functions estimated by the improved high-order differentiator and the extended state observer is compared and analyzed. It is proved that the former is one type higher than the latter. A novel high-order differential feedback control algorithm is designed using the estimated differential and model functions, suppressing unknown disturbance and successfully controlling the Quadrotor Unmanned Aerial Vehicle(QUAV) attitude system. Lyapunov-based stability analysis is conducted to prove the stability of the closed-loop system. In the control test platform experiment based on the Pixhawk, schemes of the proposed improved high-order differential feedback control, PID control, active disturbance rejection control and the traditional high-order differential feedback control are adopted to test the tracking performance and disturbance rejection ability of the quadrotor unmanned aerial vehicle for different reference attitude. The results show that the proposed scheme is significantly superior to other ones in transient performance, steady-state tracking accuracy and robustness.

参考文献

[1] ZHANG Y, CHEN Z Q, ZHANG X H, et al. A novel control scheme for quadrotor UAV based upon active disturbance rejection control[J]. Aerospace Science and Technology, 2018, 79:601-609.
[2] ZHAO B, XIAN B, ZHANG Y, et al. Nonlinear robust adaptive tracking control of a quadrotor UAV via immersion and invariance methodology[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5):2891-2902.
[3] 贾永楠, 田似营, 李擎. 无人机集群研究进展综述[J]. 航空学报, 2020, 41(S1):723738. JIA Y N, TIAN S Y, LI Q. Recent development of unmanned aerial vehicle swarms[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1):723738(in Chinese).
[4] BI H Y, QI G Y, HU J B. Modeling and analysis of chaos and bifurcations for the attitude system of a quadrotor unmanned aerial vehicle[J]. Complexity, 2019, 2019:6313925.
[5] BI H Y, QI G Y, HU J B, et al. Hidden and transient chaotic attractors in the attitude system of quadrotor unmanned aerial vehicle[J]. Chaos, Solitons & Fractals, 2020, 138:109815.
[6] AILON A, AROGETI S. Closed-form nonlinear tracking controllers for quadrotors with model and input generator uncertainties[J]. Automatica, 2015, 54:317-324.
[7] 鲜斌, 查君浩. 倾转式三旋翼无人飞行器抗扰非线性控制设计[J]. 控制与决策, 2018, 33(2):263-268. XIAN B, ZHA J H. Nonlinear disturbance-rejection control design for tilting tri-rotor UAV[J]. Control and Decision, 2018, 33(2):263-268(in Chinese).
[8] ZHANG X Y, WANG Y, ZHU G Q, et al. Compound adaptive fuzzy quantized control for quadrotor and its experimental verification[J]. IEEE Transactions on Cybernetics, 2021, 51(3):1121-1133.
[9] DOU L Q, SU X T, ZHAO X Y, et al. Robust tracking control of quadrotor via on-policy adaptive dynamic programming[J]. International Journal of Robust and Nonlinear Control, 2021, 31(7):2509-2525.
[10] LIN X B, YU Y, SUN C Y. Supplementary reinforcement learning controller designed for quadrotor UAVs[J]. IEEE Access, 7:26422-26431.
[11] LIU S D, HOU Z S, ZHANG X, et al. Model-free adaptive control method for a class of unknown MIMO systems with measurement noise and application to quadrotor aircraft[J]. IET Control Theory and Applications, 2020, 14(15):2084-2096.
[12] DONG J, HE B. Novel fuzzy PID-type iterative learning control for quadrotor UAV[J]. Sensors, 2018, 19(1):24.
[13] WANG F, GAO H M, WANG K, et al. Disturbance observer-based finite-time control design for a quadrotor UAV with external disturbance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2):834-847.
[14] 罗世彬, 吴瑕, 魏才盛. 可重复使用飞行器的保性能姿态跟踪控制方法[J]. 航空学报, 2021, 42(11):524660. LUO S B, WU X, WEI C S. A novel attitude tracking control with guaranteed performance for reusable launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11):524660(in Chinese).
[15] 路遥. 基于跟踪微分器的高超声速飞行器Backstepping控制[J]. 航空学报, 2021, 42(11):524737. LU Y. Backstepping control for hypersonic flight vehicles based on tracking differentiator[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11):524737(in Chinese).
[16] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906.
[17] CAO Y F, ZHAO Q S, YE Y Q, et al. ADRC-based current control for grid-tied inverters:Design, analysis, and verification[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10):8428-8437.
[18] 张钊, 杨忠, 段雨潇, 等. 主动变形四旋翼自抗扰飞行控制方法[J]. 控制理论与应用, 2021, 38(4):444-456. ZHANG Z, YANG Z, DUAN Y X, et al. Active disturbance rejection control method for actively deformable quadrotor[J]. Control Theory & Applications, 2021, 38(4):444-456(in Chinese).
[19] ZHAO K, ZHANG J H, MA D L, et al. Composite disturbance rejection attitude control for quadrotor with unknown disturbance[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8):6894-6903.
[20] YANG H J, CHENG L, XIA Y Q, et al. Active disturbance rejection attitude control for a dual closed-loop quadrotor under gust wind[J]. IEEE Transactions on Control Systems Technology, 2018, 26(4):1400-1405.
[21] 王术波, 韩宇, 陈建, 等. 基于ADRC迭代学习控制的四旋翼无人机姿态控制[J]. 航空学报, 2020, 41(12):324112. WANG S B, HAN Y, CHEN J, et al. Active disturbance rejection control of UAV attitude based on iterative learning control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):324112(in Chinese).
[22] GUO B Z, ZHAO Z L. Extended state observer for nonlinear systems with uncertainty[J]. IFAC Proceedings Volumes, 2011, 44(1):1855-1860.
[23] BAI W Y, CHEN S, HUANG Y, et al. Observers and observability for uncertain nonlinear systems:A necessary and sufficient condition[J]. International Journal of Robust and Nonlinear Control, 2019, 29:2960-2977.
[24] 陈增强, 程赟, 孙明玮, 等. 线性自抗扰控制理论及工程应用的若干进展[J]. 信息与控制, 2017, 46(3):257-266. CHEN Z Q, CHENG Y, SUN M W, et al. Surveys on theory and engineering applications for linear active disturbance rejection control[J]. Information and Control, 2017, 46(3):257-266(in Chinese).
[25] QI G Y, LI X, CHEN Z Q. Problems of extended state observer and proposal of compensation function observer for unknown model and application in UAV[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, PP(99):1-12.
[26] QI G Y, CHEN Z Q, YUAN Z Z. Adaptive high order differential feedback control for affine nonlinear system[J]. Chaos, Solitons & Fractals, 2008, 37(1):308-315.
[27] AGEE J T, BINGUL Z, KIZIR S. Higher-order differential feedback control of a flexible-joint manipulator[J]. Journal of Vibration and Control, 2015, 21(10):1976-1986.
[28] AYAS M S. Design of an optimized fractional high-order differential feedback controller for an AVR system[J]. Electrical Engineering, 2019, 101(4):1221-1233.
[29] AYAS M S, SAHIN E, ALTAS I H. High order differential feedback controller design and implementation for a Stewart platform[J]. Journal of Vibration and Control, 2020, 26(11-12):976-988.
[30] QI G Y, MA S L, GUO X T, et al. High-order differential feedback control for quadrotor UAV:Theory and experimentation[J]. Electronics, 2020, 9(12):2001.
文章导航

/