材料工程与机械制造

高速轴承环下润滑收油叶片结构参数与工况参数间的匹配关系

  • 吕亚国 ,
  • 姜乐 ,
  • 高晓果 ,
  • 刘振侠 ,
  • 朱鹏飞 ,
  • 高文君
展开
  • 1. 西北工业大学 动力与能源学院, 西安 710072;
    2. 中国航空发动机集团 航空发动机动力传输重点实验室, 沈阳 110015

收稿日期: 2021-07-02

  修回日期: 2021-07-29

  网络出版日期: 2021-09-06

Matching relationship between structural parameters and operating parameters of oil scoop blade for high-speed bearing with under-race lubrication

  • LYU Yaguo ,
  • JIANG Le ,
  • GAO Xiaoguo ,
  • LIU Zhenxia ,
  • ZHU Pengfei ,
  • GAO Wenjun
Expand
  • 1. School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Key laboratory of Power Transmission Technology on Aero-engine, Aero Engine Corporation of China, Shenyang 110015, China

Received date: 2021-07-02

  Revised date: 2021-07-29

  Online published: 2021-09-06

摘要

为了研究环下润滑收油叶片结构参数和工况参数间的匹配关系,通过理论分析和数值模拟方法研究了收油叶片半径差、滑油喷嘴喷射角度、收油环转速和滑油流速对滑油损失角和收油效率的影响。研究结果表明:调整滑油喷射角度和收油叶片半径差可改变滑油射流冲击收油叶片外轮廓的冲击点位置,前者的影响较小,后者在低滑油流速下可以降低滑油射流的冲击飞溅量;在考虑风阻影响的情况下得到的滑油损失角小于对应的理论分析结果;11 000 r/min转速下,增加收油叶片半径差后收油效率可提高超过3.0%,在一定转速范围内调整收油叶片的半径差可降低滑油的冲击飞溅量、提高收油效率。

本文引用格式

吕亚国 , 姜乐 , 高晓果 , 刘振侠 , 朱鹏飞 , 高文君 . 高速轴承环下润滑收油叶片结构参数与工况参数间的匹配关系[J]. 航空学报, 2022 , 43(12) : 426037 -426037 . DOI: 10.7527/S1000-6893.2021.26037

Abstract

To study the matching relationship between the structural parameters and the working condition parameters of the oil scoop blade, the effects of the radius difference of the oil scoop blade, the injection angle of the oil jet nozzle, the rotating speed of the oil scoop, and the oil velocity on the oil loss angle and oil capture efficiency are studied by theoretical analysis and numerical simulation. The results show that the impact point position of the oil jet impinging on the outer contour of the oil scoop blade can be changed by adjusting the injection angle and the radius difference of the oil scoop blade. The former has less influence, and the latter can reduce the impact splash amount of the lubricant oil at low oil jet velocity. Considering the influence of wind resistance, the oil loss angle obtained is less than the corresponding theoretical analysis result. The oil capture efficiency can be increased by more than 3.0% by increasing the radius difference of the oil scoop blade at the rotating speed of 11 000 r/min. Adjusting the radius difference of the oil scoop blade within a certain rotating speed range can reduce the impact splash amount of the lubricant oil and improve the oil capture efficiency.

参考文献

[1] 王振岭, 葛泉江, 林国昌. 航空发动机主轴轴承润滑与冷却技术研究[J]. 航空发动机, 2012, 38(3):15-17, 23. WANG Z L, GE Q J, LIN G C. Investigation on lubricating and cooling technologies for aeroengine mainshaft bearings[J]. Aeroengine, 2012, 38(3):15-17, 23(in Chinese).
[2] PALEO CAGEAO P, SIMMONS K, PRABHAKAR A, et al. Assessment of the oil scoop capture efficiency in high speed rotors[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(1):012401.
[3] LEE C W, JOHNSON G R, PALMA P C, et al. Factors affecting the behaviour and efficiency of a targeted jet delivering oil to a bearing lubrication system[C]//Proceedings of ASME Turbo Expo 2004:Power for Land, Sea, and Air.New York:ASME, 2008.
[4] 李夫庆, 周晟鋆. 燃气涡轮发动机高速轴承供油方案研究[J]. 装备制造技术, 2020(8):219-222. LI F Q, ZHOU S J. Investigation on oil supplying of high-speed bearings for gas engine[J]. Equipment Manufacturing Technology, 2020(8):219-222(in Chinese).
[5] 覃经文, 曾广乐, 郭晖, 等. 某涡轴发动机轴承环下润滑结构试验研究[J]. 润滑与密封, 2019, 44(7):138-142. QIN J W, ZENG G L, GUO H, et al. Experimental research on under-race lubrication of bearing for a turboshaft aeroengine[J]. Lubrication Engineering, 2019, 44(7):138-142(in Chinese).
[6] PRASAD S K, SANGLI P, BUYUKISIK O, et al. Prediction of gas turbine oil scoop capture efficiency[C]//Proceedings of ASME 2014 Gas Turbine India Conference.New York:ASME, 2014.
[7] KORSUKOVA E, KRUISBRINK A, MORVAN H, et al. Oil scoop simulation and analysis using CFD and SPH[C]//Proceedings of ASME Turbo Expo 2016:Turbomachinery Technical Conference and Exposition.New York:ASME, 2016.
[8] PRABHAKAR A, ABAKR Y A, SIMMONS K. Effect of vortex shedding on the performance of scoop based lubrication devices[C]//Proceedings of ASME Turbo Expo 2017:Turbomachinery Technical Conference and Exposition.New York:ASME, 2017.
[9] SIMMONS K, HARRISON L, KORSUKOVA E, et al. CFD study exploring jet configurations and jet pulsing for an aeroengine scoop-based oil delivery system[C]//Proceedings of ASME Turbo Expo 2018:Turbomachinery Technical Conference and Exposition.New York:ASME, 2018.
[10] PRABHAKAR A, ABAKR Y A, SIMMONS K. Numerical investigations to assess the impact of shaft speed on the performance of scoop devices[C]//Proceedings of ASME Turbo Expo 2018:Turbomachinery Technical Conference and Exposition.New York:ASME, 2018.
[11] KRUISBRINK A, CAGEAO P P, MORVAN H P, et al. Operating under jet splashing conditions can increase the capture efficiency of scoops[J]. International Journal of Heat and Fluid Flow, 2019, 76:296-308.
[12] KORSUKOVA E, MORVAN H. Computational fluid dynamics study of oil behavior in a scoop, and factors affecting scoop capture efficiency[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(5):051008.
[13] LEE J, PRABHAKAR A, JOHNSON K. Numerical investigations into the oil capture efficiency of a curve-bladed scoop system[C]//Proceedings of ASME Turbo Expo 2020:Turbomachinery Technical Conference and Exposition.New York:ASME, 2021.
[14] ARDASHKIN I, "UEC-AVIADVIGATEL" J, BORISOV E, et al. Investigation of the influence of the speed and direction of the oil jet on the efficiency of the oil scoop operation in the oil supply system to the bearings of the gas turbine engine[J]. Perm National Research Polytechnic University Aerospace Engineering Bulletin, 2017(51):16-25.
[15] LYU Y, LE J, LIU Z, et al. Simulation and analysis of oil scoop capture efficiency[C]//Proceedings of ASME Turbo Expo 2018:Turbomachinery Technical Conference and Exposition.New York:ASME, 2018.
[16] 姜乐, 刘振侠, 吕亚国. 环下润滑结构对径向收油环收油效率影响的数值计算研究[J]. 推进技术, 2020, 41(6):1387-1395. JIANG L, LIU Z X, LYU Y G. Numerical investigation for effects of under-race lubrication structure on oil capture efficiency of radial oil scoop[J]. Journal of Propulsion Technology, 2020, 41(6):1387-1395(in Chinese).
[17] JIANG L, LYU Y, LIU Z. Numerical study and analysis the effect of oil scoop blade tip shape on oil capture efficiency for an under-race lubrication system[C]//APISAT 2019:Asia Pacific International Symposium on Aerospace Technology, 2019.
[18] JIANG L, LIU Z, LYU Y, et al. Numerical study on flow characteristics of liquid jet in airflows[C]//Proceedings of ASME Turbo Expo 2019:Turbomachinery Technical Conference and Exposition.New York:ASME, 2019.
[19] KRUG M B, PEDUTO D, KURZ W, et al. Experimental investigation into the efficiency of an aero-engine oil jet supply system[J]. Journal of Engineering for Gas Turbines and Power, 2015, 137(1):011505.1-011505.7.
[20] 朱冬磊, 陈国定, 李炎军, 等. 中介轴承环下流道滑油流动及润滑效率分析[J]. 航空学报, 2019, 40(11):423022. ZHU D L, CHEN G D, LI Y J, et al. Inner ring oil flow and lubrication efficiency analysis of intershaft bearing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11):423022(in Chinese).
[21] 朱冬磊, 陈国定, 李炎军, 等. 基于中介轴承润滑效率的流道结构参数反向预测[J]. 航空动力学报, 2020, 35(2):440-448. ZHU D L, CHEN G D, LI Y J, et al. Inverse prediction of flow-path structure parameters based on intershaft bearing lubrication efficiency[J]. Journal of Aerospace Power, 2020, 35(2):440-448(in Chinese).
[22] 王酉名. 航空发动机对转轴间集油结构收油效率分析[D]. 沈阳:沈阳航空航天大学, 2019. WANG Y M. Analysis of efficiency of oil collecting structure in the annulus inter-spools of aeroengine[D]. Shenyang:Shenyang Aerospace University, 2019(in Chinese).
[23] 强轲, 徐让书, 戴海宁, 等. 某型航空发动机轴间轴承集油结构内的两相流动数值计算[J]. 润滑与密封, 2020, 45(11):118-124, 129. QIANG K, XU R S, DAI H N, et al. Numerical calculation of two-phase flow in the oil-collecting structure of an aero-engine intershaft bearing[J]. Lubrication Engineering, 2020, 45(11):118-124, 129(in Chinese).
[24] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1):201-225.
[25] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2):335-354.
[26] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high Reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3):227-238.
[27] WOLFSHTEIN M. The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient[J]. International Journal of Heat and Mass Transfer, 1969, 12(3):301-318.
文章导航

/