观点

脉动态电解加工

  • 朱荻 ,
  • 刘嘉 ,
  • 王登勇 ,
  • 房晓龙 ,
  • 刘言
展开
  • 南京航空航天大学 机电学院, 南京 210016

收稿日期: 2021-06-15

  修回日期: 2021-07-19

  网络出版日期: 2021-09-06

基金资助

国家自然科学基金(51535006)

Pulse dynamic electrochemical machining

  • ZHU Di ,
  • LIU Jia ,
  • WANG Dengyong ,
  • FANG Xiaolong ,
  • LIU Yan
Expand
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2021-06-15

  Revised date: 2021-07-19

  Online published: 2021-09-06

Supported by

National Natural Science Foundation of China (51535006)

摘要

电解加工在航空航天装备的核心部件制造中起到了重要作用。为了满足这些高科技产品的发展需求,它的加工精度需要进一步提高。电解加工过程中产生的氢气、温升及去除物,会显著影响加工间隙中电解液电导率的分布,并降低加工精度。脉动态电解加工将工具振动与脉冲给电优化耦合,改变了间隙状态,提高了精度和稳定性。拷贝式、旋印式、削边电极线切割式等3种脉动态电解加工形式分别对应叶片类、机匣类、榫槽类结构的加工表现出很好的工艺效果。

本文引用格式

朱荻 , 刘嘉 , 王登勇 , 房晓龙 , 刘言 . 脉动态电解加工[J]. 航空学报, 2022 , 43(4) : 525959 -525959 . DOI: 10.7527/S1000-6893.2021.25959

Abstract

Electrochemical Machining (ECM) plays an important role in the manufacturing of core components of aerospace equipment. To meet the development demands of these high-tech products, the machining accuracy of ECM needs to be further improved. During ECM process, hydrogen bubbles, joule heat and machining products are generated, which remarkably affects the distribution of the electrolyte conductivity in the inter-electrode gap and reduces the machining accuracy. Pulse dynamic ECM effectively change the gap state and improve the machining accuracy and stability by coupling tool vibration with pulse machining current optimally. In this paper, three kinds of pulse dynamic ECM modes containing copy-like ECM, counter-rotating ECM and wire ECM with edged electrode are proposed, which present favorable process effects on the machining of complex structures such as engine blades, casings and tenon grooves.

参考文献

[1] KLOCKE F, KLINK A, VESELOVAC D, et al. Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes[J]. CIRP Annals-Manufacturing Technology, 2014, 63(2):703-726.
[2] KLOCKE F, ZEIS M, KLINK A. Technological and economical capabilities of manufacturing titanium- and nickel-based alloys via electrochemical machining (ECM)[J]. Key Engineering Materials, 2012, 504-506:1237-1242.
[3] KLOCKE F, ZEIS M, HARST S, et al. Modeling and simulation of the electrochemical machining (ECM) material removal process for the manufacture of aero engine components[J]. Procedia CIRP, 2013, 8:265-270.
[4] 范植坚, 王天诚, 冯延军, 等. 火炮身管大缠角混合膛线计算机数字控制电解加工技术研究[J]. 兵工学报, 2005, 26(5):651-655. FAN Z J, WANG T C, FENG Y J, et al. CNC-ECM of the mixed rifle with a large spiral angle in cannon[J]. Acta Armamentarii, 2005, 26(5):651-655(in Chinese).
[5] XU Z Y, WANG Y D. Electrochemical machining of complex components of aero-engines:Developments, trends, and technological advances[J]. Chinese Journal of Aeronautics, 2021, 34(2):28-53.
[6] 盛文娟, 徐斌. 航空发动机机匣电解加工工艺试验[J]. 电加工与模具, 2010(2):52-55, 59. SHENG W J, XU B. Technological test of electrolytic machining of aero-engine casing[J]. Electromachining & Mould, 2010(2):52-55, 59(in Chinese).
[7] 黄维, 黄春峰, 王永明, 等. 先进航空发动机关键制造技术研究[J]. 国防制造技术, 2009(3):42-48. HUANG W, HUANG C F, WANG Y M, et al. Key manufacturing technology research of advanced aero-engine[J]. Defense Manufacturing Technology, 2009(3):42-48(in Chinese).
[8] BUBMANN M, KRAUS J, BAYER E. An integrated cost-effective approach to blisk manufacturing[C]//Proceedings of 17th Symposium on Air Breathing Engines. 2005:1-9.
[9] KENNEY J A, HWANG G S, SHIN W. Two-dimensional computational model for electrochemical micromachining with ultrashort voltage pulses[J]. Applied Physics Letters, 2004, 84(19):3774-3776.
[10] PACZKOWSKI T, ZDROJEWSKI J. Monitoring and control of the electrochemical machining process under the conditions of a vibrating tool electrode[J]. Journal of Materials Processing Technology, 2017, 244:204-214.
[11] BOGOVEEV N A, FIRSOV A G, FILATOV E I, et al. Computer support for "all-round" ECM processing of blades[J]. Journal of Materials Processing Technology, 2001, 109(3):324-326.
[12] FUJISAWA T, INABA K, YAMAMOTO M, et al. Multiphysics simulation of electrochemical machining process for three-dimensional compressor blade[J]. Journal of Fluids Engineering, 2008, 130(8):081602.
[13] ZHU D,WANG K, YANG J M. Design of electrode profile in electrochemical manufacturing process[J]. CIRP Annals, 2003, 52(1):169-172.
[14] RAJURKAR K P, SUNDARAM M M, MALSHE A P. Review of electrochemical and electrodischarge machining[J]. Procedia CIRP, 2013, 6:13-26.
[15] SMETS N, NELISSEN G, DECONINCK J, et al. Calculation of temperature fields with DC and pulsed ECM[C]//International Conference on Simulation of Electrochemical Processes. 2005:77-86.
[16] BRUSILOVSKI Z. Adjustment and readjustment of electrochemical machines and control of the process parameters in machining shaped surfaces[J]. Journal of Materials Processing Technology, 2008, 196(1-3):311-320.
[17] KOZAK J. Thermal models of pulse electrochemical machining[J]. Bulletin of the Polish Academy of Sciences, 2004, 52(4):313-320.
[18] SCHUSTER R, KIRCHNER V, ALLONGUE P, et al. Electrochemical micromachining[J]. Science, 2000, 289(5476):98-101.
[19] EBEID S J, HEWIDY M S, EI-TAWEEL T A, et al. Towards higher accuracy for ECM hybridized with low-frequency vibrations using the response surface methodology[J]. Journal of Materials Processing Technology, 2004, 149(1-3):432-438.
[20] HEWIDY M S, EBEID S J, EI-TAWEEL T A, et al. Modelling the performance of ECM assisted by low frequency vibrations[J]. Journal of Materials Processing Technology, 2007, 189(1-3):466-472.
[21] BHATTACHARYYA B, MALAPATI M, MUNDA J, et al. Influence of tool vibration on machining performance in electrochemical micro-machining of copper[J]. International Journal of Machine Tools and Manufacture, 2007, 47(2):335-342.
[22] 李小海, 王振龙, 赵万生. 高频窄脉冲电流微细电解加工[J]. 机械工程学报, 2006, 42(1):162-167. LI X H, WANG Z L, ZHAO W S. Electrolytic micromachining with high frequency short pulse current[J]. Chinese Journal of Mechanical Engineering, 2006, 42(1):162-167(in Chinese).
[23] JIANG X C, LIU J, ZHU D, et al. Research on stagger coupling mode of pulse duration and tool vibration in electrochemical machining[J]. Applied Sciences, 2018, 8(8):1296.
[24] CAO W J, WANG D Y, ZHU D. Modeling and experimental validation of interelectrode gap in counter-rotating electrochemical machining[J]. International Journal of Mechanical Sciences, 2020, 187:105920.
[25] WANG D Y, ZHU Z W, WANG N F, et al. Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution[J]. Electrochimica Acta, 2015, 156:301-307.
[26] ZOU X H, FANG X L, ZENG Y B, et al. A high efficiency approach for wire electrochemical micromachining using cutting edge tools[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(9-12):3943-3952.
文章导航

/