论文

考虑有色噪声影响的脉冲星导航2级强跟踪差分滤波器

  • 许强 ,
  • 崔洪亮 ,
  • 丁邦平 ,
  • 赵爱罡 ,
  • 赵阳
展开
  • 青州高新技术研究所 测试控制系,潍坊 262500
.E-mail: xuq1993@foxmail.com

收稿日期: 2021-07-15

  修回日期: 2021-07-29

  录用日期: 2021-08-05

  网络出版日期: 2021-08-25

Two-stage strong tracking differential Kalman filter for X-ray pulsar navigation with coloured noise

  • Qiang XU ,
  • Hongliang CUI ,
  • Bangping DING ,
  • Aigang ZHAO ,
  • Yang ZHAO
Expand
  • Department of Test and Control,Qingzhou Research Institute of High-technology,Weifang 262500,China

Received date: 2021-07-15

  Revised date: 2021-07-29

  Accepted date: 2021-08-05

  Online published: 2021-08-25

摘要

为提高X射线脉冲星导航对有色噪声及太阳系内星历误差的鲁棒性,设计了2级强跟踪差分滤波器(TSTDKF)。首先在分析导航原理基础上,导出了中心天体星历误差对导航结果的误差传递关系,并利用扩展卡尔曼滤波器(EKF)进行了仿真验证;在同一运行轨道上,又结合引力摄动模型对第三天体引力摄动数据进行了分析,证明该部分噪声为有色噪声。根据以上结论,将普通2级卡尔曼滤波器(TKF)的无偏滤波器设计为一种改进的差分卡尔曼滤波器以降低有色噪声对导航系统的影响,同时又在其独立偏差滤波器中根据观测残差构建了多重自适应调节因子以增强其跟踪性能,两者共同构成TSTDKF的2个并行滤波器。通过仿真实验证明,TSTDKF的位置误差性能最大可比EKF和TKF改进56.49%和35.18%,速度误差性能改进27.66%和17.07%;对星历误差的跟踪效果也整体好于TKF。

本文引用格式

许强 , 崔洪亮 , 丁邦平 , 赵爱罡 , 赵阳 . 考虑有色噪声影响的脉冲星导航2级强跟踪差分滤波器[J]. 航空学报, 2023 , 44(3) : 526120 -526120 . DOI: 10.7527/S1000-6893.2021.26120

Abstract

To improve the robustness of X-ray pulsar navigation to colored noise and ephemeris errors, a Two-stage Strong Tracking Differential Kalman Filter (TSTDKF) is designed. First, based on an analysis of the navigation principle, the error transfer relationship of the ephemeris error of central celestial body to the navigation result is analyzed, and the Extended Kalman Filter (EKF) is used for simulation verification. On the same orbit, the gravitational perturbation data of the third celestial body is analyzed using the gravitational perturbation model, which proves that the noise is colored noise. Based on the above conclusions, a bias-free filter of ordinary Two-stage Kalman Filter (TKF) is designed as an improved differential filter to reduce the impact of colored noise on the navigation system. In TSTDKF’s separate bias filter, multiple adaptive adjustment factors are constructed based on observation residuals to enhance its tracking performance. The two filters together form the two parallel filters of TSTDKF. Simulation experiments prove that the positioning performance of TSTDKF is 56.49% and 35.18% better than that of EKF and TKF, respectively, and the velocity of TSTDKF is also 27.66% and 17.07% better than that of EKF and TKF, respectively. Its tracking accuracy of ephemeris error is also overall better than that of TKF.

参考文献

1 HEWISH A, BELL S J, PILKINGTON J D H, et al. Observation of a rapidly pulsating radio source[J]. Nature1968217(5130): 709-713.
2 LIU J, MA J, TIAN J W, et al. Pulsar navigation for interplanetary missions using CV model and ASUKF[J]. Aerospace Science and Technology201222(1): 19-23.
3 FENG D Z, GUO H H, WANG X, et al. Autonomous orbit determination and its error analysis for deep space using X-ray pulsar[J]. Aerospace Science and Technology201432(1): 35-41.
4 李敏, 张迎春, 耿云海, 等. 鲁棒EKF在脉冲星导航系统中的应用[J]. 航空学报201637(4): 1305-1315.
  LI M, ZHANG Y C, GENG Y H, et al. A robust extended Kalman filter algorithm for X-ray pulsar navigation system[J]. Acta Aeronautica et Astronautica Sinica201637(4): 1305-1315 (in Chinese).
5 SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation[D]. Cambridge: Harvard University, 2005: 3817.
6 XU Q, WANG H L, YOU S H, et al. Impact of ephemeris errors on X-ray pulsar navigation[C]∥2018 IEEE CSAA Guidance, Navigation and Control Conference. Piscataway: IEEE Press, 2018: 1-6.
7 WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation system with the errors in the planetary ephemerides for Earth-orbiting satellite[J]. Advances in Space Research201351(12): 2394-2404.
8 LIU J, FANG J C, YANG Z H, et al. X-ray pulsar/Doppler difference integrated navigation for deep space exploration with unstable solar spectrum[J]. Aerospace Science and Technology201541: 144-150.
9 NING X L, GUI M Z, FANG J C, et al. Differential X-ray pulsar aided celestial navigation for Mars exploration[J]. Aerospace Science and Technology201762: 36-45.
10 XUE M F, SHI Y F, GUO Y F, et al. X-ray pulsar-based navigation considering spacecraft orbital motion and systematic biases[J]. Sensors201919(8): 1877.
11 XU Q, FAN X H, ZHAO A G, et al. Pre-correction X-ray pulsar navigation algorithm based on asynchronous overlapping observation method[J]. Advances in Space Research202167(1): 583-596.
12 FOLKNER W M, WILLIAMS J G, BOGGS D H. The planetary and lunar ephemeris DE 421: IOM 343R-08-003[R]. Pasadena: California Institute of Technology, 2009.
13 FOLKNER W, WILLIAMS J, BOGGS D, et al. The planetary and lunar ephemerides DE430 and DE431: IPN Progress Report 42-196[R]. Pasadena: California Institute of Technology, 2014.
14 WANG Y D, ZHENG W, SUN S M, et al. X-ray pulsar-based navigation using time-differenced measurement[J]. Aerospace Science and Technology201436: 27-35.
15 GUI M Z, NING X L, MA X, et al. A novel celestial aided time-differenced pulsar navigation method against ephemeris error of Jupiter for Jupiter exploration[J]. IEEE Sensors Journal201919(3): 1127-1134.
16 WANG S, CUI P Y, GAO A, et al. Absolute navigation for Mars final approach using relative measurements of X-ray pulsars and Mars orbiter[J]. Acta Astronautica2017138: 68-78.
17 MIGNARD F, KLIONER S A, LINDEGREN L, et al. gaia data release 2: The celestial reference frame (Gaia-CRF2) [DB/OL]. arXiv preprint1804.09377, 2018.
18 SHEIKH S I, PINES D J, RAY P S, et al. Spacecraft navigation using X-ray pulsars[J]. Journal of Guidance, Control, and Dynamics200629(1): 49-63.
19 XU Q, WANG H L, FENG L, et al. An improved augmented X-ray pulsar navigation algorithm based on the norm of pulsar direction error[J]. Advances in Space Research201862(11): 3187-3198.
20 孙守明. 基于X射线脉冲星的航天器自主导航方法研究[D]. 长沙: 国防科学技术大学, 2011: 162.
  SUN S M. Study on autonomous navigation method of spacecraft based on X-ray pulsars[D]. Changsha: National University of Defense Technology, 2011: 162. (in Chinese)
21 MCCARTHY D D, PETIT G. IERS conventions (2003)[M]. Frankfurt am Main: Verlag des Bundesamtes für Kartographie und Geod?sie, 2004: 127.
22 PETIT G, LUZUM B. The IERS Conventions ( 2010 )[J]. Geophysical Research Abstracts201113(2010): 12214.
23 邓雪梅, 樊敏, 谢懿. JPL行星历表的比较及评估[J]. 天文学报201354(6): 550-561.
  DENG X M, FAN M, XIE Y. Comparisons and evaluations of JPL ephemerides[J]. Acta Astronomica Sinica201354(6): 550-561 (in Chinese).
24 JOHNSON T J, GUILLEMOT L, KERR M, et al. Broadband pulsations from PSR B1821-24: Implications for emission models and the pulsar population of M28[J]. The Astrophysical Journal Letters2013778(2): 106.
25 MANCHESTER R N, HOBBS G B, TEOH A, et al. The Australia telescope national facility pulsar catalogue[J]. The Astronomical Journal2005129(4): 1993-2006.
26 FRIEDLAND B. Treatment of bias in recursive filtering[J]. IEEE Transactions on Automatic Control196914(4): 359-367.
27 HSIEH C S, CHEN F C. General two-stage Kalman filters[J]. IEEE Transactions on Automatic Control200045(4): 819-824.
28 林旭, 刘俊钊. 有色噪声下的目标跟踪卡尔曼滤波新算法[J]. 中国惯性技术学报201826(6): 830-834.
  LIN X, LIU J Z. New Kalman filtering algorithm for target tracking with colored noise[J]. Journal of Chinese Inertial Technology201826(6): 830-834 (in Chinese).
29 赵长胜, 陶本藻. 有色噪声作用下的抗差卡尔曼滤波[J]. 武汉大学学报·信息科学版200732(10): 880-882.
  ZHAO C S, TAO B Z. Robust Kalman filtering of linear system with colored noises[J]. Geomatics and Information Science of Wuhan University200732(10): 880-882 (in Chinese).
30 许强, 范小虎, 徐利国, 等. 脉冲星方位误差估计的TSKF算法[J]. 北京航空航天大学学报202046(4): 761-768.
  XU Q, FAN X H, XU L G, et al. TSKF algorithm for pulsar position error estimation[J]. Journal of Beijing University of Aeronautics and Astronautics202046(4): 761-768 (in Chinese).
文章导航

/