流体力学与飞行力学

固体火箭超燃冲压发动机性能试验

  • 李潮隆 ,
  • 夏智勋 ,
  • 马立坤 ,
  • 赵翔 ,
  • 罗振兵 ,
  • 段一凡
展开
  • 国防科技大学 空天科学学院, 长沙 410073

收稿日期: 2021-07-07

  修回日期: 2021-07-28

  网络出版日期: 2021-08-25

基金资助

国家自然科学基金(51706241,52006240)

Experiment on performance of solid rocket scramjet

  • LI Chaolong ,
  • XIA Zhixun ,
  • MA Likun ,
  • ZHAO Xiang ,
  • LUO Zhenbing ,
  • DUAN Yifan
Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2021-07-07

  Revised date: 2021-07-28

  Online published: 2021-08-25

Supported by

National Natural Science Foundation of China (51706241, 52006240)

摘要

为了研究发动机构型、推进剂类型和当量比对固体火箭超燃冲压发动机的性能影响,选取了3种固体火箭超燃冲压发动机燃烧室构型,分别使用碳氢推进剂和含硼质量分数35%推进剂共计开展了8次地面直连试验。试验模拟了23 km、马赫数5.5的飞行工况,通过测量推力、流量和压力等参数,得出了超声速燃烧室和发动机的整体性能参数,进而研究了发动机构型、推进剂类型以及当量比3个关键因素对固体火箭超燃冲压发动机的性能影响。结果表明:带有凹腔-支板组合装置的燃烧室构型虽然冷流内阻最大,但试验燃烧效率和比冲性能最优。针对带有凹腔-支板组合装置的燃烧室构型,使用碳氢推进剂的发动机性能整体优于使用含硼质量分数35%推进剂对应的性能参数;使用碳氢推进剂的极限掺混当量比大于0.7,而使用含硼质量分数35%推进剂的极限掺混当量比在0.65附近。这是由于相对碳颗粒,硼颗粒在超声速气流中燃烧组织更为困难导致的。相对于使用碳氢推进剂,使用含硼质量分数35%推进剂的一次燃烧产物更容易在喉部沉积,其燃气发生器压力曲线也存在更多峰值振荡的现象。在所研究的试验当量比范围内,使用碳氢推进剂的燃烧效率峰值约0.82,此时对应内推力比冲峰值约687 s;而使用含硼质量分数35%推进剂的燃烧效率峰值约0.69,此时对应内推力比冲峰值约592 s。

本文引用格式

李潮隆 , 夏智勋 , 马立坤 , 赵翔 , 罗振兵 , 段一凡 . 固体火箭超燃冲压发动机性能试验[J]. 航空学报, 2022 , 43(12) : 126075 -126075 . DOI: 10.7527/S1000-6893.2021.26075

Abstract

To obtain the influence of combustor configurations, propellant types, and equivalence ratio on the performance of solid rocket scramjet, a total of eight ground direct-connected tests were carried out with three solid rocket scramjet combustors using hydrocarbon propellant and 35% (by weight) boron propellant, respectively. The experiments simulated a flight Mach number 5.5 at 23 km. By measuring the three parameters of thrust, mass flow rate, and pressure, the overall performance parameters of supersonic combustor and scramjet can be obtained. Then, the effects of combustor configurations, propellant types, and equivalence ratio on the performance of solid rocket scramjet were analyzed. The results show that although the internal resistance of that configuration is the largest, the combustion efficiency and specific impulse are the best in the combustor configuration with combined cavity and strut device. For the combustor configuration with combined cavity and strut device, the performance of the scramjet using hydrocarbon propellant is better than that using 35% (by weight) boron propellant. The limit mixing equivalence ratio of hydrocarbon propellant is greater than 0.7, while the limit mixing equivalence ratio of 35% (by weight) boron propellant is about 0.65 due to the reason that it is more difficult for boron particles to achieve high combustion efficiency in supersonic flow than the carbon particles. Compared with the tests using hydrocarbon propellant, the primary combustion products in these tests using 35% (by weight) boron propellant are more likely to deposit in the surface of throat, and there are more peak oscillations in the pressure curve measured in the gas generator. Within the range of experimental equivalence ratio, the peak value of combustion efficiency using hydrocarbon propellant is about 0.82, and the corresponding peak value of specific impulse for internal thrust is about 687 s. The peak combustion efficiency using 35% (by weight) boron propellant is about 0.69, corresponding to the peak value of specific impulse for internal thrust is about 592 s.

参考文献

[1] MCCLINTON C R, RAUSCH V L, NGUYEN L T, et al. Preliminary X-43 flight test results[J]. Acta Astronautica, 2005, 57(2-8):266-276.
[2] MARSHALL L, BAHM C, CORPENING G, et al. Overview with results and lessons learned of the X-43A Mach 10 flight:AIAA-2005-3336[R]. Reston:AIAA,2005.
[3] MARSHALL L, CORPENING G, SHERRILL R. A chief engineer's view of the NASA X-43A scramjet flight test:AIAA-2005-3332[R]. Reston:AIAA, 2005.
[4] URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50:593-627.
[5] SELEZNEV R K. History of scramjet propulsion development[C]//11th International Conference Aerophysics and Physical Mechanics of Classical and Quantum Systems. Bristol:IOP Publishing Ltd, 2018.
[6] 曾慧, 白菡尘, 朱涛. X-51A超燃冲压发动机及飞行验证计划[J]. 导弹与航天运载技术, 2010(1):57-61. ZENG H, BAI H C, ZHU T. X-51A scramjet engine flight and demonstration program[J]. Missiles and Space Vehicles, 2010(1):57-61(in Chinese).
[7] ZHAO X, XIA Z X, MA L K, et al. Research progress on solid-fueled scramjet[J]. Chinese Journal of Aeronautics, 2022, 35(1):398-415.
[8] SALGANSKY E A, LUTSENKO N A, LEVIN V A, et al. Modeling of solid fuel gasification in combined charge of low-temperature gas generator for high-speed ramjet engine[J]. Aerospace Science and Technology, 2019, 84:31-36.
[9] ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10):1929-1953.
[10] SELEZNEV R K, SURZHIKOV S T, SHANG J S. A review of the scramjet experimental data base[J]. Progress in Aerospace Sciences, 2019, 106:43-70.
[11] 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京:科学出版社, 2012. CAI G B, XU D J. Hypersonic vehicle technology[M]. Beijing:Science Press, 2012(in Chinese).
[12] LV Z, XIA Z, LIU B, et al. Preliminary experimental study on solid-fuel rocket scramjet combustor[J]. Journal of Zhejiang University-Science A, 2017, 18:106-112.
[13] 吕仲, 夏智勋, 刘冰, 等. 采用固体燃料的超燃冲压发动机研究进展[J]. 航空动力学报, 2016, 31(8):1973-1984. Lü Z, XIA Z X, LIU B, et al. Review of research on solid fuel scramjet engine[J]. Journal of Aerospace Power, 2016, 31(8):1973-1984(in Chinese).
[14] LV Z, XIA Z X, LIU B, et al. Experimental and numerical investigation of a solid-fuel rocket scramjet combustor[J]. Journal of Propulsion and Power, 2015, 32(2):273-278.
[15] 刘仔, 陈林泉, 褚佑彪, 等. 燃气喷射方式对固体火箭超燃冲压发动机性能的影响[J]. 固体火箭技术, 2018, 41(6):710-714. LIU Z, CHEN L Q, CHU Y B, et al. Effect of gas injection way on the solid-rocket scramjet performance[J]. Journal of Solid Rocket Technology, 2018, 41(6):710-714(in Chinese).
[16] 赵翔, 夏智勋, 马立坤, 等. 固体火箭超燃冲压发动机地面直连试验[J]. 航空兵器, 2018, 25(4):57-61. ZHAO X, XIA Z X, MA L K, et al. Direct-connected ground test of solid-fuel rocket scramjet[J]. Aero Weaponry, 2018, 25(4):57-61(in Chinese).
[17] LIU Y, GAO Y G, SHI L, et al. Preliminary experimental study on solid rocket fuel gas scramjet[J]. Acta Astronautica, 2018, 153:146-153.
[18] LI C L, ZHAO X, XIA Z X, et al. Influence of the vortex generator on the performance of solid rocket scramjet combustor[J]. Acta Astronautica, 2019, 164:174-183.
[19] LIU J, WANG N F, WANG J, et al. Optimizing combustion performance in a solid rocket scramjet engine[J]. Aerospace Science and Technology, 2020, 99:105560.
[20] LI C L, XIA Z X, MA L K, et al. Experimental and numerical study of solid rocket scramjet combustor equipped with combined cavity and strut device[J]. Acta Astronautica, 2019, 162:145-154.
[21] LI C L, XIA Z X, MA L K, et al. Performance evaluation for scramjet based on ground direct-connected test:A method investigation[J]. Aerospace Science and Technology, 2021, 117:106895.
[22] BEN-YAKAR A, NATAN B, GANY A. Investigation of a solid fuel scramjet combustor[J]. Journal of Propulsion and Power, 1998, 14(4):447-455.
[23] GORDON S, MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1:Analysis:NASA-RP-1311[R]. Washington,D.C.:NASA, 1994.
[24] GUGULOTHU S K, NUTAKKI P K. Dynamic fluid flow characteristics in the hydrogen-fuelled scramjet combustor with transverse fuel injection[J]. Case Studies in Thermal Engineering, 2019, 14:100448.
[25] HUANG W. Transverse jet in supersonic crossflows[J]. Aerospace Science and Technology, 2016, 50:183-195.
[26] SHARMA V, ESWARAN V, CHAKRABORTY D. Effect of fuel-jet injection angle variation on the overall performance of a SCRAMJET engine[J]. Aerospace Science and Technology, 2020, 100:105786.
[27] 林森, 沈赤兵, 肖锋, 等. 超声速气流中液体横向脉冲射流一次破碎的大涡模拟[J]. 燃烧科学与技术, 2020, 26(1):87-95. LIN S, SHEN C B, XIAO F, et al. Large eddy simulation of primary breakup of transverse pulsed liquid jet in supersonic flow[J]. Journal of Combustion Science and Technology, 2020, 26(1):87-95(in Chinese).
[28] CHOUBEY G, YUVARAJAN D, HUANG W, et al. Recent research progress on transverse injection technique for scramjet applications-a brief review[J]. International Journal of Hydrogen Energy, 2020, 45(51):27806-27827.
[29] 陈斌斌, 夏智勋, 黄利亚, 等. 含硼固冲补燃室燃烧组织技术进展[J]. 航空兵器, 2018, 25(4):3-20. CHEN B B, XIA Z X, HUANG L Y, et al. Review on combustion technology of boron-based solid ramjet afterburning chamber[J]. Aero Weaponry, 2018, 25(4):3-20(in Chinese).
[30] LIANG D L, LIU J Z, ZHOU Y N, et al. Ignition delay kinetic model of boron particle based on bidirectional diffusion mechanism[J]. Aerospace Science and Technology, 2018, 73:78-84.
[31] AO W, WANG Y, WU S X. Ignition kinetics of boron in primary combustion products of propellant based on its unique characteristics[J]. Acta Astronautica, 2017, 136:450-458.
[32] 王德全, 夏智勋, 胡建新. 固冲发动机补燃室凝相碳颗粒燃烧研究[J]. 国防科技大学学报, 2010, 32(3):37-41. WANG D Q, XIA Z X, HU J X. Combustion study of condensed carbon particle in the secondary combustion chamber of solid rocket ramjet[J]. Journal of National University of Defense Technology, 2010, 32(3):37-41(in Chinese).
[33] BESHTY B S. A mathematical model for the combustion of a porous carbon particle[J]. Combustion and Flame, 1978, 32:295-311.
[34] 吕仲. 固体火箭超燃冲压发动机工作特性研究[D]. 长沙:国防科技大学, 2012. LV Z. Investigation on operating characteristics of solid-fuel rocket scramjet engine[D]. Changsha:National University of Defense Technology, 2012(in Chinese).
文章导航

/