固体力学与飞行器总体设计

基于材料场级数展开的结构动力学拓扑优化

  • 梁宽 ,
  • 付莉莉 ,
  • 张晓鹏 ,
  • 罗阳军
展开
  • 1. 大连理工大学 工业装备结构分析国家重点实验室, 大连 116024;
    2. 西安航天动力研究所,西安 710100

收稿日期: 2021-06-22

  修回日期: 2021-07-16

  网络出版日期: 2021-08-25

基金资助

国家自然科学基金(11772077)

Topology optimization of structural dynamics based on material-field series-expansion

  • LIANG Kuan ,
  • FU Lili ,
  • ZHANG Xiaopeng ,
  • LUO Yangjun
Expand
  • 1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;
    2. Xi’an Aerospace Power Research Institute, Xi’an 710100, China

Received date: 2021-06-22

  Revised date: 2021-07-16

  Online published: 2021-08-25

Supported by

National Natural Science Foundation of China (11772077)

摘要

如何通过结构优化实现稳态与瞬态动力载荷下动力学响应的有效抑制是航空航天结构设计中关心的重要问题之一。传统基于梯度的拓扑优化方法因需要复杂的灵敏度推导使得动力学优化指标选择受限,并且复杂的动力学响应也使得优化问题往往陷入局部最优解。本文基于材料场级数展开策略和非梯度优化算法有效实现了结构稳态和瞬态动力学拓扑优化问题的求解。在动力学拓扑优化问题中,采用材料场级数展开技术将结构拓扑在特征映射空间进行降维表征,大幅度减少设计变量,进而采用序列Kriging代理模型算法求解。通过给出的拓扑优化算例,验证了该方法能够在不需要结构动响应灵敏度分析的前提下有效地处理结构稳态与瞬态动力学拓扑优化问题。

本文引用格式

梁宽 , 付莉莉 , 张晓鹏 , 罗阳军 . 基于材料场级数展开的结构动力学拓扑优化[J]. 航空学报, 2022 , 43(9) : 226002 -226002 . DOI: 10.7527/S1000-6893.2021.26002

Abstract

Structural dynamic response optimization under steady-state and transient excitations is of major concern in the design of aerospace structures. Traditional gradient based topology optimization methods usually require complex sensitivity derivations, which makes the selection of dynamic optimization index limited, and the complicated dynamic response often makes the optimization problem fall into the local optimal solution. In this paper, therefore, the steady-state and transient dynamic topology optimization problems are formulated and solved effectively with the material-field series expansion strategy and non-gradient optimization algorithm, In the implementation of dynamic topology optimization, the material-field series expansion technique is used to reduce the dimension of the structure topology in the mapping space, which greatly reduces the design variables, and then the sequential Kriging surrogate model algorithm is adopted to solve the optimization problem. The examples show that the proposed method can effectively deal with the topology optimization problems of structural steady-state and transient dynamics without structural dynamic response sensitivity analysis.

参考文献

[1] SIGMUND O, MAUTE K. Topology optimization approaches[J]. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031-1055.
[2] WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1-2): 227-246.
[3] HUANG X D, XIE Y M. A further review of ESO type methods for topology optimization[J]. Structural and Multidisciplinary Optimization, 2010, 41(5): 671-683.
[4] OLHOFF N, DU J B. Topological design for minimum dynamic compliance of structures under forced vibration. Topology optimization in structural and continuum mechanics[M]. Berlin: Springer, 2014:325-339.
[5] OLHOFF N, DU J B. Generalized incremental frequency method for topological designof continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency[J]. Structural and Multidisciplinary Optimization, 2016, 54(5): 1113-1141.
[6] ZARGHAM S, WARD T A, RAMLI R, et al. Topology optimization: A review for structural designs under vibration problems[J]. Structural and Multidisciplinary Optimization, 2016, 53(6): 1157-1177.
[7] YE H L, SHEN J X, SUI Y K. Dynamic tological optimal design of three-dimensional continuum structures with frequencies constraints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(6): 1037-1045 (in Chinese). 叶红玲, 沈静娴, 隋允康. 频率约束的三维连续体结构动力拓扑优化设计[J]. 力学学报, 2012, 44(6): 1037-1045.
[8] LI Z H, SHI T L, XIA Q. Eliminate localized eigenmodes in level set based topology optimization for the maximization of the first eigenfrequency of vibration[J]. Advances in Engineering Software, 2017, 107: 59-70.
[9] XU B, HAN Y S, ZHAO L, et al. Topology optimization of continuum structures for natural frequencies considering casting constraints[J]. Engineering Optimization, 2019, 51(6): 941-960.
[10] YAN K, CHENG G D, WANG B P. Topology optimization of damping layers in shell structures subject to impact loads for minimum residual vibration[J]. Journal of Sound and Vibration, 2018, 431: 226-247.
[11] DAHL J, JENSEN J S, SIGMUND O. Topology optimization for transient wave propagation problems in one dimension[J]. Structural and Multidisciplinary Optimization, 2008, 36(6): 585-595.
[12] SILVA O M, NEVES M M, LENZI A. A critical analysis of using the dynamic compliance as objective function in topology optimization of one-material structures considering steady-state forced vibration problems[J]. Journal of Sound and Vibration, 2019, 444: 1-20.
[13] RONG J H, TANG Z L, XIE Y M, et al. Topological optimization design of structures under random excitations using SQP method[J]. Engineering Structures, 2013, 56: 2098-2106.
[14] ZHU J H, HE F, LIU T, et al. Structural topology optimization under harmonic base acceleration excitations[J]. Structural and Multidisciplinary Optimization, 2018, 57(3): 1061-1078.
[15] ZHENG L, TANG Z C, HAN Z M, et al. Optimal design of damping material topology configuration to suppress interior noise in vehicle[J]. Journal of Vibration and Shock, 2015, 34(9): 42-47 (in Chinese). 郑玲, 唐重才, 韩志明, 等. 车身结构阻尼材料减振降噪优化设计[J]. 振动与冲击, 2015, 34(9): 42-47.
[16] ZHANG X P, KANG Z. Dynamic topology optimization of piezoelectric structures with active control for reducing transient response[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 281: 200-219.
[17] YUN K S, YOUN S K. Topology optimization of viscoelastic damping layers for attenuating transient response of shell structures[J]. Finite Elements in Analysis and Design, 2018, 141: 154-165.
[18] VICENTE W M, PICELLI R, PAVANELLO R, et al. Topology optimization of frequency responses of fluid-structure interaction systems[J]. Finite Elements in Analysis and Design, 2015, 98: 1-13.
[19] ZHANG X P, KANG Z. Topology optimization of piezoelectric layers in plates with active vibration control[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(6): 697-712.
[20] LUO Y J, BAO J W. A material-field series-expansion method for topology optimization of continuum structures[J]. Computers & Structures, 2019, 225: 106122.
[21] LUO Y J, XING J, KANG Z. Topology optimization using material-field series expansion and Kriging-based algorithm: An effective non-gradient method[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112966.
[22] MOBLEY R K. Vibration fundamentals[M]. Amsterdam: Elsevier, 1999.
[23] GAO T, ZHANG W H. A mass constraint formulation for structural topology optimization with multiphase materials[J]. International Journal for Numerical Methodsin Engineering, 2011, 88(8): 774-796.
[24] GUEST J K. Topology optimization with multiple phase projection[J]. Computer Methods in Applied Mechanics and Engineering, 2009, 199(1-4): 123-135.
[25] WANG R, ZHANG X P, KANG Z. Topology optimization of damping layer in structures for minimizing dynamic compliance[J]. Journal of Vibration and Shock, 2013, 32(22): 36-40 (in Chinese). 王睿, 张晓鹏, 亢战. 以动柔度为目标的结构阻尼材料层拓扑优化[J]. 振动与冲击, 2013, 32(22): 36-40.
[26] ZHANG X P, XING J, LIU P, et al. Realization of full and directional band gap design by non-gradient topology optimization in acoustic metamaterials[J]. Extreme Mechanics Letters, 2021, 42: 101126.
[27] ZHANG X P, LUO Y J, YAN Y, et al. Photonic band gap material topological design at specified target frequency (adv. theory simul. 10/2021)[J]. Advanced Theory and Simulations, 2021, 4(10): 2170022.
[28] LIU H, ZHANG W H, GAO T. A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations[J]. Structural and Multidisciplinary Optimization, 2015, 51(6): 1321-1333.
[29] ZHANG W H, LIU H, GAO T. Topology optimization of large-scale structures subjected to stationary random excitation:An efficient optimization procedure integrating pseudo excitation method and mode acceleration method[J]. Computers & Structures, 2015, 158: 61-70.
文章导航

/