多相流与反应流的机理、模型及其调控技术专栏

非等强度多道冲击波作用下空泡溃灭机制分析

  • 吴汪霞 ,
  • 王兵 ,
  • 王晓亮 ,
  • 刘青泉
展开
  • 1. 北京理工大学 宇航学院, 北京 100081;
    2. 清华大学 航天航空学院, 北京 100084

收稿日期: 2021-05-30

  修回日期: 2021-06-21

  网络出版日期: 2021-08-25

基金资助

国家自然科学基金(12002039,12032005,51676111);中国博士后基金(2021T140056,2020M670145)

Mechanism of cavity collapse induced by multiple shock waves of different strengths

  • WU Wangxia ,
  • WANG Bing ,
  • WANG Xiaoliang ,
  • LIU Qingquan
Expand
  • 1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China

Received date: 2021-05-30

  Revised date: 2021-06-21

  Online published: 2021-08-25

Supported by

National Natural Science Foundation of China (12002039, 12032005, 51676111);China Postdoctoral Science Foundation (2021T140056, 2020M670145)

摘要

航空航天、生物医学等领域均存在冲击波与空泡作用问题,冲击波尤其是多道冲击波作用下空泡溃灭包含着复杂的多相瞬变行为与物理现象。基于自主搭建的可压缩多相流并行数值平台,对液体中单一/多道冲击波与空泡的作用过程进行了数值模拟。通过对冲击波作用下空泡内波系性质,以及多道冲击波与空泡作用后的系列反射波系在液体中的相互作用过程进行详细解析,分析了不同冲击波作用下空泡的形变演化过程,探究了空泡的溃灭机制与特性。研究发现,相较于单一冲击波的作用,多道冲击波作用下空泡内部及周围液体流场中的波系结构更为复杂,然而无论是单一冲击波或是多道冲击波工况,其最终诱发的空泡溃灭形态均十分相似。而且,当空泡发生溃灭前所受到多道冲击波的总强度与单一冲击波强度相等时,空泡的溃灭波强度也十分相近,为多道冲击波与空泡作用效果的定量化评估提供了理论基础和依据。

本文引用格式

吴汪霞 , 王兵 , 王晓亮 , 刘青泉 . 非等强度多道冲击波作用下空泡溃灭机制分析[J]. 航空学报, 2021 , 42(12) : 625894 -625894 . DOI: 10.7527/S1000-6893.2021.25894

Abstract

The cavity collapse induced by the shock wave, especially multiple shock waves, is a compressible multiphase problem which contains transient fluid dynamics and complex physical phenomena. As this problem widely exists in many application fields, for example the spacecraft fuel injection and the extracorporeal shock wave therapy processes, it is necessary to carry out detailed analyses on it. In this study, the interaction process between single/multiple shock waves and the cavity in liquid is numerically simulated based on our in-house compressible multiphase parallel platform. The procedures of wave evolution and cavity collapse under different initial shock wave configurations are investigated in detail. It is found that, comparing with the configuration of one single shock wave, the wave system structures in both the liquid flow field and the cavity are more complex under the configuration of multiple shock waves. However, the cavity collapse processes are quite similar under all these conditions. It is also found that when the total intensity of multiple shock waves, which have interacted with the cavity before the cavity collapsing, is equal to that of the single shock wave, the collapse wave intensities would be quite equivalent. This phenomenon provides a roughly quantified evaluation of the effect of multiple shock waves interacting with the cavity.

参考文献

[1] 吴钦, 郭一梦, 刘韵晴, 等. 非定常空化流动及其诱导振动特性研究综述[J]. 空气动力学学报, 2020, 38(4):746-760. WU Q, GUO Y M, LIU Y Q, et al. Review on the cavitating flow-induced vibrations[J]. Acta Aerodynamica Sinica, 2020, 38(4):746-760(in Chinese).
[2] WANG C M, XIANG L, TAN Y H, et al. Experimental investigation of thermal effect on cavitation characteristics in a liquid rocket engine turbopump inducer[J]. Chinese Journal of Aeronautics, 2021, 34(8):48-57.
[3] 李锋, 吕付国, 罗卫东, 等. 超声速气流中液体横向射流的破碎特性[J]. 北京航空航天大学学报, 2015, 41(12):2356-2362. LI F, LYU F G, LUO W D, et al. Breakup characteristics of liquid jet in supersonic cross flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(12):2356-2362(in Chinese).
[4] ZHAO X, XIA Z X, MA L K, et al. Research progress on solid-fueled Scramjet[J]. Chinese Journal of Aeronautics, (2021-06-24)[2021-08-16]. https://doi.org/10.1016/j.cja.2021.06.002.
[5] 杨军, 史展, 邢更彦. 体外冲击波疗法治疗肌肉骨骼系统疾病研究的相关进展[J]. 中国医学前沿杂志(电子版), 2014, 6(1):34-39. YANG J, SHI Z, XING G Y. The research progression on musculoskeletal disorders of extracorporeal shock wave therapy[J]. Chinese Journal of the Frontiers of Medical Science (Electronic Version), 2014, 6(1):34-39(in Chinese).
[6] BRENNEN C E. Cavitation and bubble dynamics[M]. Oxford:Oxford University Press, 1995:15-43.
[7] PLESSET M S, PROSPERETTI A. Bubble dynamics and cavitation[J]. Annual Review of Fluid Mechanics, 1977, 9(1):145-185.
[8] SUSLICK K S, FLANNIGAN D J. Inside a collapsing bubble:Sonoluminescence and the conditions during cavitation[J]. Annual Review of Physical Chemistry, 2008, 59:659-683.
[9] OHL S W, KLASEBOER E, KHOO B C. Bubbles with shock waves and ultrasound:A review[J]. Interface Focus, 2015, 5(5):20150019.
[10] BRENNEN C E. Fission of collapsing cavitation bubbles[J]. Journal of Fluid Mechanics, 2002, 472:153-166.
[11] RAYLEIGH L. VIII. On the pressure developed in a liquid during the collapse of a spherical cavity[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1917, 34(200):94-98.
[12] PLESSET M S. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics, 1949, 16(3):277-282.
[13] PLESSET M S, MITCHELL T P. On the stability of the spherical shape of a vapor cavity in a liquid[J]. Quarterly of Applied Mathematics, 1956, 13(4):419-430.
[14] PLESSET M S, CHAPMAN R B. Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary[J]. Journal of Fluid Mechanics, 1971, 47(2):283-290.
[15] RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions[J]. Annual Review of Fluid Mechanics, 2011, 43(1):117-140.
[16] BLAKE J R, GIBSON D C. Growth and collapse of a vapour cavity near a free surface[J]. Journal of Fluid Mechanics, 1981, 111:123-140.
[17] TOMITA Y, ROBINSON P B, TONG R P, et al. Growth and collapse of cavitation bubbles near a curved rigid boundary[J]. Journal of Fluid Mechanics, 2002, 466:259-283.
[18] TOMITA Y, SHIMA A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse[J]. Journal of Fluid Mechanics, 1986, 169:535-564.
[19] DEAR J P, FIELD J E, WALTON A J. Gas compression and jet formation in cavities collapsed by a shock wave[J]. Nature, 1988, 332(6164):505-508.
[20] BOURNE N K, FIELD J E. Shock-induced collapse of single cavities in liquids[J]. Journal of Fluid Mechanics, 1992, 244:225-240.
[21] BALL G J, HOWELL B P, LEIGHTON T G, et al. Shock-induced collapse of a cylindrical air cavity in water:A Free-Lagrange simulation[J]. Shock Waves, 2000, 10(4):265-276.
[22] HAWKER N A, VENTIKOS Y. Interaction of a strong shockwave with a gas bubble in a liquid medium:A numerical study[J]. Journal of Fluid Mechanics, 2012, 701:59-97.
[23] BETNEY M R, TULLY B, HAWKER N A, et al. Computational modelling of the interaction of shock waves with multiple gas-filled bubbles in a liquid[J]. Physics of Fluids, 2015, 27(3):036101.
[24] REISMAN G E, WANG Y C, BRENNEN C E. Observations of shock waves in cloud cavitation[J]. Journal of Fluid Mechanics, 1998, 355:255-283.
[25] METZNER G, DOHNALEK C, AIGNER E. High-energy Extracorporeal Shock-Wave Therapy (ESWT) for the treatment of chronic plantar fasciitis[J]. Foot & Ankle International, 2010, 31(9):790-796.
[26] JOHNSEN E, COLONIUS T. Shock-induced collapse of a gas bubble in shockwave lithotripsy[J]. The Journal of the Acoustical Society of America, 2008, 124(4):2011-2020.
[27] CHURCH C C. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter[J]. The Journal of the Acoustical Society of America, 1989, 86(1):215-227.
[28] WU W X, XIANG G M, WANG B. On high-speed impingement of cylindrical droplets upon solid wall considering cavitation effects[J]. Journal of Fluid Mechanics, 2018, 857:851-877.
[29] SAUREL R, PETITPAS F, ABGRALL R. Modelling phase transition in metastable liquids:Application to cavitating and flashing flows[J]. Journal of Fluid Mechanics, 2008, 607:313-350.
[30] WU W X, WANG B, XIANG G M. Impingement of high-speed cylindrical droplets embedded with an air/vapour cavity on a rigid wall:numerical analysis[J]. Journal of Fluid Mechanics, 2019, 864:1058-1087.
[31] WANG B, XIANG G M, HU X Y. An incremental-stencil WENO reconstruction for simulation of compressible two-phase flows[J]. International Journal of Multiphase Flow, 2018, 104:20-31.
[32] CORALIC V, COLONIUS T. Finite-volume WENO scheme for viscous compressible multicomponent flows[J]. Journal of Computational Physics, 2014, 274:95-121.
[33] LIN C D, LUO K H, XU A G, et al. Multiple-relaxation-time discrete Boltzmann modeling of multicomponent mixture with nonequilibrium effects[J]. Physical Review E, 2021, 103(1):013305.
[34] LIN C D, LUO K H. Mesoscopic simulation of nonequilibrium detonation with discrete Boltzmann method[J]. Combustion and Flame, 2018, 198:356-362.
[35] LIN C D, XU A G, ZHANG G C, et al. Polar-coordinate lattice Boltzmann modeling of compressible flows[J]. Physical Review E, 2014, 89:013307.
文章导航

/