材料工程与机械制造

航空不锈钢薄板电磁超声SH导波检测定量分析方法

  • 吴锐 ,
  • 石文泽 ,
  • 卢超 ,
  • 李秋锋 ,
  • 陈果
展开
  • 1. 南昌航空大学 无损检测教育部重点实验室, 南昌 330063;
    2. 中国科学院声学研究所 声场声信息国家重点实验室, 北京 100190;
    3. 赣南师范大学 江西省数值模拟与仿真技术重点实验室, 赣州 341000

收稿日期: 2021-05-31

  修回日期: 2021-06-18

  网络出版日期: 2021-08-25

基金资助

国家自然科学基金(12064001, 52065049, 51705231);江西省自然科学基金重点项目(20192ACBL20052);江西省科技厅科技计划(20204BCJL22039, 20192BCD40028);江西省青年科学基金(20181BAB216020);南昌航空大学研究生创新专项资金(YC2020057)

Quantitative analysis method for electromagnetic ultrasonic SH guided wave detection of aerospace stainless steel sheet

  • WU Rui ,
  • SHI Wenze ,
  • LU Chao ,
  • LI Qiufeng ,
  • CHEN Guo
Expand
  • 1. Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China;
    2. State Key Laboratory of Acoustic Field and Acoustic Information, Academy of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
    3. Key Laboratory of Simulation and Numerical Modeling Technology of Jiangxi Province, Gannan Normal University, Ganzhou 341000, China

Received date: 2021-05-31

  Revised date: 2021-06-18

  Online published: 2021-08-25

Supported by

National Natural Science Foundation of China (12064001, 52065049, 51705231); Natural Science Foundation of Jiangxi Province (20192ACBL20052); Science and Technology Innovation Platform of Jiangxi Province (20204BCJL22039, 20192BCD40028); Natural Science Fund Project in Jiangxi Province (20181BAB216020); Graduate Innovation Fund Project of Nanchang Hangkong University (YC2020057)

摘要

水平剪切(SH)波电磁超声换能器(EMAT)具有非接触、无需耦合剂、对表面油污涂层不敏感、单点激励大范围检测等优点, 在航空不锈钢薄板快速导波检测中具有重要的技术优势。首先建立了含缺陷的不锈钢薄板SH导波传播有限元模型, 分析了不同设计参数EMAT对应缺陷的距离-波幅曲线(DAC), 并对DAC进行实验验证。然后建立了不锈钢薄板中SH导波声场分析有限元模型, 研究了周期性永磁体电磁超声换能器(PPM EMAT)中永磁体宽度、长度和对数对SH导波辐射声场特性的影响, 得到了EMAT的轴线声压分布, 并在此基础上获取了EMAT的最优设计参数组合。结果表明增大永磁体长度和对数都能提高EMAT轴线辐射声场强度, 使EMAT在远距离检测具有较好的声压分布均匀性。当永磁体对数、长度、宽度分别为6对、25 mm、7 mm时, 对应的EMAT具有较高的轴线辐射声场强度和较平稳的DAC, 更适合对航空不锈钢薄板进行远距离快速导波检测。

本文引用格式

吴锐 , 石文泽 , 卢超 , 李秋锋 , 陈果 . 航空不锈钢薄板电磁超声SH导波检测定量分析方法[J]. 航空学报, 2022 , 43(9) : 425888 -425888 . DOI: 10.7527/S1000-6893.2021.25888

Abstract

The Shear Horizontal (SH) wave Electromagnetic Ultrasonic Transducer (EMAT) has the advantages of non-contact, no coupling agent, insensitivity to surface oil coating, single point excitation and wide range detection. It has important technical advantages in rapid guided wave detection of aviation stainless steel sheet. A finite element model of SH guided wave propagation in stainless steel sheet with defects is established. The Distance Amplitude Curve (DAC) of the defects corresponding to different design parameters of EMAT is analyzed, and the DAC was verified by experiments. A finite element model for the acoustic field analysis of SH guided waves in stainless steel plates is established. The effects of the width, length and logarithm of the Permanent Magnet in Periodic-Permanent-Magnet Electromagnetic Acoustic Transducer (PPM EMAT) on the acoustic field characteristics of SH guided waves are studied. The axial sound pressure distribution of EMAT is obtained. On this basis, the optimal design parameter combination of EMAT is obtained. The results show that increasing the length and logarithm of permanent magnet can improve axial radiation acoustic field intensity of the EMAT, which makes the EMAT have good uniformity of sound pressure distribution in remote detection. When the number, length and width of permanent magnet are 6 pairs, 25 mm and 7 mm respectively, the corresponding EMAT has higher axial radiation acoustic field intensity and more stable DAC, and is more suitable for long-distance rapid guided wave detection of aviation stainless steel sheet.

参考文献

[1] GU X P, LIU J, XU G C, et al. Ultrasonic testing and evaluation of laser welds in stainless steel[J]. Lasers in Engineering, 2014, 26(1-2): 103-113.
[2] TANG M J, LI J Y, YU X, et al. Tensile behavior of stainless steel clad plates with different cladding ratios[J]. Journal of Constructional Steel Research, 2021, 182: 106641.
[3] MA B Q, ZHOU Z G. Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(7): 1787-1803 (in Chinese). 马保全, 周正干. 航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J]. 航空学报, 2014, 35(7): 1787-1803.
[4] LIU Z H, XIE M W, ZHONG X W, et al. Research progress of electromagnetic acoustic transducers for ultrasonic guided waves inspection[J]. Journal of Beijing University of Technology, 2017, 43(2): 192-202 (in Chinese). 刘增华, 谢穆文, 钟栩文, 等. 超声导波电磁声换能器的研究进展[J]. 北京工业大学学报, 2017, 43(2): 192-202.
[5] ZHOU Z G, FENG Z Y, GAO Y F, et al. Application of ultrasonic guided waves to defect inspection of large thin aluminum plate[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(4): 1044-1048 (in Chinese). 周正干, 冯占英, 高翌飞, 等. 超声导波在大型薄铝板缺陷检测中的应用[J]. 航空学报, 2008, 29(4): 1044-1048.
[6] HE J J, HUO H D, GUAN X F, et al. A Lamb wave quantification model for inclined cracks with experimental validation[J]. Chinese Journal of Aeronautics, 2021, 34(2): 601-611.
[7] VÁZQUEZ S, GOSÁLBEZ J, BOSCH I, et al. Comparative study of coupling techniques in lamb wave testing of metallic and cementitious plates[J]. Sensors (Basel, Switzerland), 2019, 19(19): 4068.
[8] JIAO J P, LI Y Q, DU L, et al. Study on the compound imaging method for crack detection in plate structure using array of Lamb waves[J]. Chinese Journal of Scientific Instrument, 2016, 37(3): 593-601 (in Chinese). 焦敬品, 李勇强, 杜礼, 等. 板结构裂纹兰姆波阵列复合成像方法研究[J]. 仪器仪表学报, 2016, 37(3): 593-601.
[9] CHEN C D, CHIU Y C, HUANG Y H, et al. Assessments of structural health monitoring for fatigue cracks in metallic structures by using lamb waves driven by piezoelectric transducers[J]. Journal of Aerospace Engineering, 2021, 34(1): 04020091.
[10] LIN W, WANG J Q. Study on relationship between the Lamb wave velocity and the fatigue of plate[J]. Acta Acustica, 2011, 36(2): 156-159 (in Chinese). 林玮, 王佳麒. 兰姆波各模式声速与板材疲劳关系研究[J]. 声学学报, 2011, 36(2): 156-159.
[11] LIU T H, PEI C X, CAI R, et al. A flexible and noncontact guided-wave transducer based on coils-only EMAT for pipe inspection[J]. Sensors and Actuators A: Physical, 2020, 314: 112213.
[12] ZHANG Z G, QUE P W, LEI H M. The magnetostrictive generation of lamb wave by electromagnetic acoustic transducer and its characters[J]. Journal of Shanghai Jiao Tong University, 2006, 40(1): 133-137 (in Chinese). 张志钢, 阙沛文, 雷华明. 兰姆波的电磁超声磁致伸缩式激励及其特性[J]. 上海交通大学学报, 2006, 40(1): 133-137.
[13] ROUGE C, LHÉMERY A, SÉGUR D. Modal solutions for SH guided waves radiated by an EMAT in a ferromagnetic plate[J]. Journal of Physics: Conference Series, 2012, 353: 012014.
[14] ZHANG L L, LIU X L, LIU J X. Propagation characteristics of sh guided waves in a piezoelectric nanoplate[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 503-511 (in Chinese). 张乐乐, 刘响林, 刘金喜. 压电纳米板中SH型导波的传播特性[J]. 力学学报, 2019, 51(2): 503-511.
[15] LI F X, MIAO H C. Development of an apparent face-shear mode (d36) piezoelectric transducer for excitation and reception of shear horizontal waves via two-dimensional antiparallel poling[J]. Journal of Applied Physics, 2016, 120(14): 144101.
[16] MIAO H C, DONG S X, LI F X. Excitation of fundamental shear horizontal wave by using face-shear (d36) piezoelectric ceramics[J]. Journal of Applied Physics, 2016, 119(17): 174101.
[17] ZHENG Y, ZHOU J J, ZHANG Z J, et al. Research on frequency adaptive optimization method of electromagnetic acoustic testing[J]. Journal of Mechanical Engineering, 2019, 55(14): 11-18 (in Chinese). 郑阳, 周进节, 张宗健, 等. 电磁超声检测频率自适应优化方法研究[J]. 机械工程学报, 2019, 55(14): 11-18.
[18] LI S S, CHEN X M, LI X. Study on dispersion characteristics of ultrasonic guided wave[J]. Applied Mechanics and Materials, 2013, 333-335: 1713-1718.
[19] YANG L J, XING Y H, ZHANG J, et al. Crack defect detection of aluminum plate based on electromagnetic ultrasonic guided wave[J]. Chinese Journal of Scientific Instrument, 2018, 39(4): 150-160 (in Chinese). 杨理践, 邢燕好, 张佳, 等. 基于电磁超声导波的铝板裂纹缺陷检测方法[J]. 仪器仪表学报, 2018, 39(4): 150-160.
[20] KIM D K, LEE J K, SEUNG H M, et al. Omnidirectional shear horizontal wave based tomography for damage detection in a metallic plate with the compensation for the transfer functions of transducer[J]. Ultrasonics, 2018, 88: 72-83.
[21] HUANG F Y, ZHOU Z G. Effect of static bias magnetic field on electromagnetic acoustic transducer sensitivity[J]. Journal of Mechanical Engineering, 2011, 47(10): 1-7 (in Chinese). 黄凤英, 周正干. 静态偏置磁场对电磁超声换能器灵敏度的影响[J]. 机械工程学报, 2011, 47(10): 1-7.
[22] SUN F R, SUN Z G, ZHANG W Z, et al. Review of modeling method and optimum design of EMAT transmitters based on Lorentz principle[J]. Journal of Mechanical Engineering, 2016, 52(6): 12-21 (in Chinese). 孙斐然, 孙振国, 张文增, 等. 基于洛伦兹力机制的电磁超声发射换能器的建模与优化[J]. 机械工程学报, 2016, 52(6): 12-21.
[23] SHI Y, SHI W Z, CHEN G, et al. Optimized design of surface wave electromagnetic acoustic transducer for rail tread testing[J]. Chinese Journal of Scientific Instrument, 2018, 39(8): 239-249 (in Chinese). 时亚, 石文泽, 陈果, 等. 钢轨踏面检测电磁超声表面波换能器优化设计[J]. 仪器仪表学报, 2018, 39(8): 239-249.
[24] PEI C X, ZHAO S Q, XIAO P, et al. A modified meander-line-coil EMAT design for signal amplitude enhancement[J]. Sensors and Actuators A: Physical, 2016, 247: 539-546.
[25] SUN H Y, PENG L S, HUANG S L, et al. Analytical model and optimal focal position selection for oblique point-focusing shear horizontal guided wave EMAT[J]. Construction and Building Materials, 2020, 258: 120375.
[26] SHI W Z, CHENG J J, HU S Z, et al. Application of pulse compression in electromagnetic ultrasonic guided wave detection of Aluminum sheet[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 425063 (in Chinese). 石文泽, 程进杰, 胡硕臻, 等. 脉冲压缩在铝薄板电磁超声导波检测中的应用[J]. 航空学报, 2022, 43(3): 425063.
[27] LIU S Z, WEI J, ZHANG C, et al. Adaptive filtering and feature extraction of ultrasonic signal based on FPGA[J]. Transactions of China Electrotechnical Society, 2020, 35(13): 2870-2878 (in Chinese). 刘素贞, 魏建, 张闯, 等. 基于FPGA的超声信号自适应滤波与特征提取[J]. 电工技术学报, 2020, 35(13): 2870-2878.
[28] OHTSUKA Y, NAKAMURA N, NISHIKAWA M. Multi-path method by using shear horizontal wave for defect size detection[J]. Przeglad Elektrotechniczny, 2007, 83(11): 191-193.
[29] LI W B, CHO Y. Quantification and imaging of corrosion wall thinning using shear horizontal guided waves generated by magnetostrictive sensors[J]. Sensors and Actuators A: Physical, 2015, 232: 251-258.
[30] NAZEER N, RATASSEPP M, FAN Z. Damage detection in bent plates using shear horizontal guided waves[J]. Ultrasonics, 2017, 75: 155-163.
[31] SHI W Z, CHEN W W, LU C, et al. Interaction of circumferential SH0 guided wave with circumferential cracks in pipelines[J]. Nondestructive Testing and Evaluation, 2020(1): 1-26.
文章导航

/