流体力学与飞行力学

发动机进气压力控制系统噪声抑制方法

  • 白克强 ,
  • 张松 ,
  • 但志宏 ,
  • 钱秋朦
展开
  • 1. 西南科技大学 信息工程学院, 绵阳 621010;
    2. 特殊环境机器人技术四川省重点实验室, 绵阳 621010;
    3. 中国航发四川燃气涡轮研究院 高空模拟技术重点试验室, 绵阳 621703;
    4. 中国航发四川燃气涡轮研究院, 绵阳 621703

收稿日期: 2021-05-11

  修回日期: 2022-01-12

  网络出版日期: 2021-08-25

基金资助

四川省科技计划(2021YJ0334)

Noise suppression method of intake pressure control system for aircraft engine

  • BAI Keqiang ,
  • ZHANG Song ,
  • DAN Zhihong ,
  • QIAN Qiumeng
Expand
  • 1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
    2. Robot Technology Used for Special Environment Key Laboratory of Sichuan Province, Mianyang 621010, China;
    3. Science and Technology on Altitude Simulation Laboratory, AECC Sichuan Gas Turbine Establishment, Mianyang 621703, China;
    4. AECC Sichuan Gas Turbine Establishment, Mianyang 621703, China

Received date: 2021-05-11

  Revised date: 2022-01-12

  Online published: 2021-08-25

Supported by

Sichuan Science and Technology Program (2021YJ0334)

摘要

高空台进气压力控制系统具有大时滞特性,被控对象受到输入噪声、相位延迟等不确定因素的影响,导致控制系统难以精准控制,给控制器的设计带来挑战。针对该问题,首先采用基于跟踪微分器(TD)的测量噪声抑制对系统输入噪声进行估计, 通过引入基于跟踪微分器与Fal函数滤波算法的相位补偿进行了补偿器设计。然后对高空台进气压力控制系统设计了跟踪微分器的测量噪声抑制算法, 并进行了滤波特性分析。在设计相位补偿方法时,不仅考虑了测量信号中随机噪声的分离,还对微分信号中的抖动信号进行了滤波,使得系统初始信号和滤波后的光滑微分信号重新构成新的有用信号,最终解决了输出信号的相位滞后对控制精度影响的问题。通过数值模拟对经典fhan算法和提出的Fast+PA(Phase Advancer)算法进行了比较,验证了Fast+PA算法噪声抑制的优势。结果表明,Fast+PA算法通过调整重要参数滤波因子h0和向前预报补偿因子λ的值既能消除颤振及保证滤波的效率,又具有较好的相位补偿和动态响应能力。

本文引用格式

白克强 , 张松 , 但志宏 , 钱秋朦 . 发动机进气压力控制系统噪声抑制方法[J]. 航空学报, 2022 , 43(8) : 125779 -125779 . DOI: 10.7527/S1000-6893.2021.25779

Abstract

The intake pressure control system of the high altitude platform has the characteristics of large time delay. The controlled object is affected by uncertain factors such as input noise and phase delay, which leads to the problem that the control system is difficult to control accurately, and thus brings challenges to the design of the controller. To solve this problem, firstly, the measurement noise suppression based on Tracking Differentiator (TD) is used to estimate the system input noise, and the compensator is designed by introducing phase compensation based on tracking differentiator and Fal function filtering algorithm. Then, the measurement noise suppression algorithm of tracking differentiator is designed for the intake pressure control system of high altitude platform, and the filtering characteristics are analyzed. When designing the phase compensation method, not only the separation of random noise in the measurement signal is considered, but also the jitter signal in the differential signal is filtered, so that the system initial signal and the filtered smooth differential signal reconstitute a new useful signal, and finally solve the problem of the influence of the phase lag of the output signal on the control accuracy. Through numerical simulation, the classical fhan algorithm is compared with the proposed Fast + PA (Phase Advancer) algorithm, and the advantages of Fast + PA algorithm in noise suppression are verified. The results show that Fast + PA algorithm, through adjusting the important parameters filter factor h0 and forward prediction compensation factor λ value, can not only eliminate chatter and ensure the efficiency of filtering, but also has good phase compensation and dynamic response ability..

参考文献

[1] 侯敏杰. SB101高空模拟试车台非等流量试验方法研究[J]. 燃气涡轮试验与研究, 1995, 8(2): 18-20, 25. HOU M J. Research on the non-equal flow test method of SB101 high altitude simulation test bench[J]. Gas Turbine Experiment and Research, 1995, 8(2): 18-20, 25 (in Chinese).
[2] 何勇. 航空发动机台架试车CAT系统研发[D]. 南京: 南京航空航天大学, 2008: 21-35. HE Y. Research and design of an aero-engine test-bed computer aided test system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 21-35 (in Chinese).
[3] 雷利. 航空发动机试车台地面试验测试系统研究[D]. 西安: 西安电子科技大学, 2015: 42-55. LEI L. A study of the test system of aviation engine test on ground test-bed[D]. Xi'an: Xidian University, 2015: 42-55 (in Chinese).
[4] 宋金来, 甘作新, 韩京清. 自抗扰控制技术滤波特性的研究[J]. 控制与决策, 2003, 18(1): 110-112, 119. SONG J L, GAN Z X, HAN J Q. Study of active disturbance rejection controller on filtering[J]. Control and Decision, 2003, 18(1): 110-112, 119 (in Chinese).
[5] 林飞, 孙湖, 郑琼林, 等. 用于带有量测噪声系统的新型扩张状态观测器[J]. 控制理论与应用, 2005, 22(6): 995-998. LIN F, SUN H, ZHENG Q L, et al. Novel extended state observer for uncertain system with measurement noise[J]. Control Theory & Applications, 2005, 22(6): 995-998 (in Chinese).
[6] 黄国勇, 姜长生, 王玉惠, 等. 新型有限时间收敛滑模扩张状态观测器研究[J]. 信息与控制, 2008, 37(1): 63-67. HUANG G Y, JIANG C S, WANG Y H, et al. On a novel sliding mode extended state observer with finite-time convergence[J]. Information and Control, 2008, 37(1): 63-67 (in Chinese).
[7] 王宇航, 姚郁, 马克茂. Fal函数滤波器的分析及应用[J]. 电机与控制学报, 2010, 14(11): 88-91, 99. WANG Y H, YAO Y, MA K M. Analysis and application of Fal function filter[J]. Electric Machines and Control, 2010, 14(11): 88-91, 99 (in Chinese).
[8] XUE W C, BAI W Y, YANG S, et al. ADRC with adaptive extended state observer and its application to air-fuel ratio control in gasoline engines[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5847-5857.
[9] PU Z Q, YUAN R Y, YI J Q, et al. A class of adaptive extended state observers for nonlinear disturbed systems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5858-5869.
[10] 代明光, 齐蓉. 基于扩展状态观测器的电动负载模拟器反演滑模控制[J]. 航空学报, 2020, 41(5): 323683. DAI M G, QI R. Backstepping sliding mode control of electric dynamic load simulator based on extended state observer[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 323683 (in Chinese).
[11] 韩京清. 时滞对象的自抗扰控制[J]. 控制工程, 2008, 15(S2): 7-10, 18. HAN J Q. Auto-disturbances rejection control for time-delay systems[J]. Control Engineering of China, 2008, 15(S2): 7-10, 18 (in Chinese).
[12] 弭寒光, 袁海文, 郭鑫, 等. 利用跟踪微分器提高独立电源系统有源滤波器滤波性能的研究[J]. 电力自动化设备, 2012, 32(2): 76-80. MI H G, YUAN H W, GUO X, et al. Improving active filter performance by tracking differentiator for islanded power system[J]. Electric Power Automation Equipment, 2012, 32(2): 76-80 (in Chinese).
[13] 明超, 孙瑞胜, 白宏阳, 等. 改进的导弹半实物仿真跟踪微分器设计[J]. 国防科技大学学报, 2017, 39(5): 68-73. MING C, SUN R S, BAI H Y, et al. Modified tracking differentiator design for missile in hardware-in-loop simulation system[J]. Journal of National University of Defense Technology, 2017, 39(5): 68-73 (in Chinese).
[14] 史永丽, 侯朝桢. 改进的非线性跟踪微分器设计[J]. 控制与决策, 2008, 23(6): 647-650, 659. SHI Y L, HOU C Z. Design of improved nonlinear tracking differentiator[J]. Control and Decision, 2008, 23(6): 647-650, 659 (in Chinese).
[15] 倪兴, 徐先春, 王旭良, 等. 基于跟踪微分器的速高曲线计算[J]. 自动化技术与应用, 2019, 38(12): 15-17. NI X, XU X C, WANG X L, et al. Calculation of velocity-height curve based on tracking-differentiator[J]. Techniques of Automation and Applications, 2019, 38(12): 15-17 (in Chinese).
[16] 李宏扬. 跟踪微分器改进算法的应用分析[J]. 吉林大学学报(信息科学版), 2021, 39(1): 45-50. LI H Y. Application analysis of improved tracking differentiator algorithm[J]. Journal of Jilin University (Information Science Edition), 2021, 39(1): 45-50 (in Chinese).
[17] YU Y, WANG H L, LI N, et al. Finite-time model-assisted active disturbance rejection control with a novel parameters optimizer for hypersonic reentry vehicle subject to multiple disturbances[J]. Aerospace Science and Technology, 2018, 79: 588-600.
[18] 徐喆垚, 陈宇坤, 齐乃明, 等. 航天器交会对接模拟系统逼近过程自抗扰控制[J]. 航空学报, 2016, 37(5): 1552-1562. XU Z Y, CHEN Y K, QI N M, et al. Active disturbance rejection control for spacecraft rendezvous and docking simulation system during proximity operations[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5): 1552-1562 (in Chinese).
[19] 谭健, 周洲, 祝小平, 等. 飞翼布局无人机反步L2增益纵向着陆鲁棒控制[J]. 哈尔滨工业大学学报, 2016, 48(4): 91-96. TAN J, ZHOU Z, ZHU X P, et al. Backstepping L2 gain robust control of longitudinal landing of flying-wing UAV[J]. Journal of Harbin Institute of Technology, 2016, 48(4): 91-96 (in Chinese).
[20] 张文跃, 佟来生, 王滢, 等. 跟踪微分器在磁浮列车悬浮间隙处理中的应用[J]. 城市轨道交通研究, 2021, 24(3): 26-29. ZHANG W Y, TONG L S, WANG Y, et al. Application of tracking differentiator in maglev train suspension gap disposal[J]. Urban Mass Transit, 2021, 24(3): 26-29 (in Chinese).
[21] 方安然, 李旦, 张建秋. 异常值和未知观测噪声鲁棒的非线性滤波器[J]. 航空学报, 2021, 42(7): 324675. FANG A R, LI D, ZHANG J Q. Nonlinear filter robust to outlier and unknown observation noise[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 324675 (in Chinese).
[22] 刘磊, 白克强, 张松, 等. 基于改进跟踪微分器的进气压力控制技术研究[J]. 自动化仪表, 2020, 41(3): 47-52. LIU L, BAI K Q, ZHANG S, et al. Research on air intake pressure control technology based on improved tracking differentiator[J]. Process Automation Instrumentation, 2020, 41(3): 47-52 (in Chinese).
[23] 谢云德, 龙志强. 高精度快速非线性离散跟踪微分器[J]. 控制理论与应用, 2009, 26(2): 127-132. XIE Y D, LONG Z Q. A high-speed nonlinear discrete tracking-differentiator with high precision[J]. Control Theory & Applications, 2009, 26(2): 127-132 (in Chinese).
文章导航

/