在航空发动机中,用于连接涡轮盘和叶片的榫槽/榫头结构加工精度、表面质量要求极高,现有加工技术还不能实现涡轮盘榫槽结构的低成本、高效、高质量加工。电解线切割具有加工精度高、加工表面质量好、加工灵活性强等特点,对涡轮盘榫槽结构的低成本加工具有原理性优势。针对管电极内喷液电解切割时,切缝侧壁表面粗糙度不均匀问题,提出了浸没式管电极内喷液电解切割加工方法。在较为稳定、均匀的外部流场和快速流动的加工间隙内部流场共同作用下,实现了大厚度难加工材料的高效高质量加工。结果表明,相比于管电极内喷液电解切割,浸没式管电极内喷液电解切割加工出的切缝侧壁表面粗糙度比较均匀,整体加工质量较好。优选出内喷液压力,以4.5 μm/s的进给速度在20 mm厚的高温合金GH4169工件上加工出表面粗糙度为Ra 1.247 μm的涡轮盘榫槽结构。
In the aero-engine, the machining accuracy and surface quality of the mortise/tenon structure used to connect the turbine disc and blade are extremely high. However, the existing machining technology cannot realize the low cost, high efficiency, and high quality machining of the turbine disc mortise. Electrochemical cutting has the characteristics of high machining accuracy, good surface quality and high machining flexibility, and the advantages of principle for low-cost machining of turbine disc mortise. To solve the problem of the uneven surface roughness of the sidewall cut by inner-jet electrochemical cutting using tube electrode, a method of inner-jet electrochemical cutting using tube electrode immersed in electrolyte was proposed. Under the combined action of a flow field that is relatively stable in the entire machining area and a flow field that flows rapidly in the machining gap, high efficiency and high quality machining of large thickness and difficult to machine materials is realized. The experimental results verified that the surface roughness of slit sidewall cut by inner-jet electrochemical cutting using tube electrode immersed in electrolyte is more uniform, and the overall machining quality is better compared with that of the inner-jet electrochemical cutting using tube electrode. The pressure of inner-jet electrolyte was optimized, and mortise structure of aero-engine turbine disc with surface roughness 1.247 μm was successfully fabricated on a 20 mm thick superalloy GH4169 at a feed rate of 4.5 μm/s and inner-jet electrolyte pressure of 2.0 MPa.
[1] 黄文周, 张俊杰, 张乘齐. 枞树形榫联接结构参数选取及其与应力的关系[J]. 燃气涡轮试验与研究, 2013, 26(1):22-25. HUANG W Z, ZHANG J J, ZHANG C Q. Relationship between the structure parameters and the stress in the fir-tree connection structure[J]. Gas Turbine Experiment and Research, 2013, 26(1):22-25(in Chinese).
[2] 申秀丽, 张野, 龙丹, 等. 涡轮榫接结构多层次设计优化方法[J]. 航空动力学报, 2015, 30(12):2824-2832. SHEN X L, ZHANG Y, LONG D, et al. Multi-level design and optimization of turbine joint structure[J]. Journal of Aerospace Power, 2015, 30(12):2824-2832(in Chinese).
[3] 徐岩, 张川. 拉刀设计对航空发动机涡轮盘榫槽型面的影响[J]. 航空制造技术, 2010, 53(15):50-52. XU Y, ZHANG C. Influence of broach design on aeroengine turbine disk fir tree groove[J]. Aeronautical Manufacturing Technology, 2010, 53(15):50-52(in Chinese).
[4] 刘志强. 重型燃气轮机涡轮盘榫槽拉削机理与拉刀研制试验研究[D]. 上海:上海交通大学, 2018. LIU Z Q. Study on broaching process meachism and development and experimental investigation of broaching tool for heavy gas turbine mortise[D]. Shanghai:Shanghai Jiao Tong University, 2018(in Chinese).
[5] 蒲一民. 涡轮盘榫槽线切割加工工艺研究[J]. 航天制造技术, 2016(2):37-40, 70. PU Y M. Research on WEDM process of turbine groove[J]. Aerospace Manufacturing Technology, 2016(2):37-40, 70(in Chinese).
[6] 豆尚成, 赵万生, 顾琳, 等. 电火花线切割加工技术最新研究进展[J]. 电加工与模具, 2011(2):1-3. DOU S C, ZHAO W S, GU L, et al. Review of wire-electro discharge machining technologies[J]. Electromachining & Mould, 2011(2):1-3(in Chinese).
[7] 苏云玲, 丁金明, 周贺, 等. 特种加工技术在航天动力系统涡轮盘上的应用[J]. 航天制造技术, 2017(4):47-51. SU Y L, DING J M, ZHOU H, et al. Application of special machining technology on turbine disk of space power system[J]. Aerospace Manufacturing Technology, 2017(4):47-51(in Chinese).
[8] ASPINWALL D K, SOO S L, BERRISFORD A E, et al. Workpiece surface roughness and integrity after WEDM of Ti-6Al-4V and Inconel 718 using minimum damage generator technology[J]. CIRP Annals, 2008, 57(1):187-190.
[9] KLOCKE F, KLINK A, VESELOVAC D, et al. Turbomachinery component manufacture by application of electrochemical, electro-physical and photonic processes[J]. CIRP Annals, 2014, 63(2):703-726.
[10] KLOCKE F, WELLING D, DIECKMANN J, et al. Developments in wire-EDM for the manufacturing of fir tree slots in turbine discs made of inconel 718[J]. Key Engineering Materials, 2012, 504-506:1177-1182.
[11] KLOCKE F, WELLING D, DIECKMANN J. Comparison of grinding and wire EDM concerning fatigue strength and surface integrity of machined Ti6Al4V components[J]. Procedia Engineering, 2011, 19:184-189.
[12] ZHU D, WANG K, QU N S. Micro wire electrochemical cutting by using in situ fabricated wire electrode[J]. CIRP Annals, 2007, 56(1):241-244.
[13] 邹祥和. 线电极脉动态电解切割加工基础研究[D]. 南京:南京航空航天大学, 2017. ZOU X H. Fundamental research on fluctuating wire electrochemical machining[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017(in Chinese).
[14] FANG X L, HAN Z, CHEN M, et al. Pulse-current wire electrochemical machining with axial electrolyte Flushing along a rotating helical wire tool[J]. Journal of the Electrochemical Society, 2020, 167(11):113503.
[15] QU N S, FANG X L, LI W, et al. Wire electrochemical machining with axial electrolyte Flushing for titanium alloy[J]. Chinese Journal of Aeronautics, 2013, 26(1):224-229.
[16] HE H D, QU N S, ZENG Y B, et al. Machining accuracy in pulsed wire electrochemical machining of γ-TiAl alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5-8):2353-2359.
[17] KLOCKE F, HERRIG T, ZEIS M, et al. Experimental investigations of cutting rates and surface integrity in wire electrochemical machining with rotating electrode[J]. Procedia CIRP, 2018, 68:725-730.
[18] KLOCKE F, HERRIG T, KLINK A. Evaluation of wire electrochemical machining with rotating electrode for the manufacture of fir tree slots[C]//Proceedings of ASME Turbo Expo 2018:Turbomachinery Technical Conference and Exposition. New York:ASME,2018.
[19] YANG T, ZENG Y B, HANG Y S. Workpiece reciprocating movement aided wire electrochemical machining using a tube electrode with an array of holes[J]. Journal of Materials Processing Technology, 2019, 271:634-644.
[20] YANG T. In-situ fabrication of tube electrodes with array slits using multi-wire electrochemical machining[J]. International Journal of Electrochemical Science, 2020,15:1691-1703.
[21] YANG T, FANG X L, HU X Y, et al. Electrochemical cutting of mortise-tenon joint structure by rotary tube electrode with helically distributed jet-flow holes[J]. Chinese Journal of Aeronautics, 2022, 35(2):376-387.
[22] 王建业, 徐家文. 电解加工原理及应用[M]. 北京:国防工业出版社, 2001. WANG J Y, XU J W. Principle and application of electrochemical machining[M]. Beijing:National Defense Industry Press, 2001(in Chinese).