航空发动机运行安全专栏

民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ: 气路、机械和FADEC系统故障诊断与预测

  • 曹明 ,
  • 黄金泉 ,
  • 周健 ,
  • 陈雪峰 ,
  • 鲁峰 ,
  • 魏芳
展开
  • 1. 中国航发商用航空发动机有限责任公司, 上海 201109;
    2. 上海交通大学 航空航天学院, 上海 200240;
    3. 南京航空航天大学 能源与动力学院, 南京 210016;
    4. 西安交通大学 机械工程学院, 西安 710049

收稿日期: 2021-03-26

  修回日期: 2021-04-12

  网络出版日期: 2021-08-25

基金资助

国家科技重大专项(2017-Ⅳ-0008-0045)

Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅰ: Diagnosis and prognosis of engine gas path, mechanical and FADEC

  • CAO Ming ,
  • HUANG Jinquan ,
  • ZHOU Jian ,
  • CHEN Xuefeng ,
  • LU Feng ,
  • WEI Fang
Expand
  • 1. AECC Commercial Aircraft Engine Co., Ltd, Shanghai 201109, China;
    2. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China;
    3. School of Energy & Power, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    4. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2021-03-26

  Revised date: 2021-04-12

  Online published: 2021-08-25

Supported by

National Science and Technology Major Project (2017-Ⅳ-0008-0045)

摘要

最近这一二十年相关工程技术的发展, 给民用航空发动机故障诊断与健康管理(EHM)系统研发提出了新的挑战和机遇。本文综述围绕EHM偏上游功能的民用发动机气路性能退化诊断和预测、发动机机械系统故障和发动机FADEC系统故障诊断与3个模块的设计验证技术的需求、必要性及现状进行了讨论, 并指出了未来的主要研发方向。全文的讨论围绕以下关键技术发展趋势展开: 基于非线性无迹卡尔曼滤波器(UKF)和深度学习神经网络的发动机气路故障诊断算法己经显示出提高气路诊断精度的潜力; 复合材料叶片在涡扇发动机里己经得到广泛使用; 增材制造技术正被越来越多地应用于复杂发动机零部件的制造; 金属屑末传感器的精度已获得大幅提高, 其技术成熟度己达到发动机使用要求, 为与振动信号的融合诊断铺平了道路; 电气化、智能化的发动机全权限数字控制系统(FADEC)发展趋势对现有的基于传统构型控制部件和集中式控制架构的故障诊断算法也提出了新的挑战。

本文引用格式

曹明 , 黄金泉 , 周健 , 陈雪峰 , 鲁峰 , 魏芳 . 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅰ: 气路、机械和FADEC系统故障诊断与预测[J]. 航空学报, 2022 , 43(9) : 625573 -625573 . DOI: 10.7527/S1000-6893.2021.25573

Abstract

The engineering advancements during the last two decades have presented opportunities as well as challenges for the Engine Health Management (EHM) system development of civil aero-engines. This R&D review provides an in-depth discussion on EHM needs, gaps and potential solutions/future R&D development directions, focusing on the "up-stream" EHM development modules: Engine gas path diagnostics and prognostics, mechanical diagnostics and prognostics, FADEC diagnostics and prognostics. Results shows the Unscented Kalman Filter (UKF) method and deep-learning neural networks have shown promises on improving the engine gas path diagnostics accuracy; composite fans have found widespread applications in turbo-fan engines; powder metallurgy has seen more and more applications on fabricating aero-engine parts with complex shapes; the accuracies of metal particle sensing technologies have witnessed significant improvements, with technology readiness level matching the aero-engine needs, and paved the way for fusion diagnostics with vibration signal. The result also show that electrification and intelligentization trends of FADEC system presents new challenges for the diagnostics of the traditionally centralized control architecture.

参考文献

[1] MEHER-HOMJI C, CHAKER M, MOTIWALLA H. Gas turbine performance deterioration[C]//Proceedings of 30th Turbomachinery Symposium, 2001: 139-176.
[2] HANACHI H, MECHEFSKE C, LIU J, et al. Performance-based gas turbine health monitoring, diagnostics, and prognostics: a survey[J]. IEEE Transactions on Reliability, 2018, 67(3): 1340-1363.
[3] VOLPONI A J. Gas turbine engine health management: past, present, and future trends[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(5): 051201.
[4] JAW L C. Recent advancements in aircraft engine health management (EHM) technologies and recommendations for the next step[C]//Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air, 2008: 683-695.
[5] LARKIN J, MOAWAD E, PIELUSZCZAK D. Functional aspects of, and trade considerations for, an application-optimized engine health management system (EHMS)[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 2004.
[6] HESS A, FILA L. The Joint Strike Fighter (JSF) PHM concept: Potential impact on aging aircraft problems[C]//Proceedings of IEEE Aerospace Conference. Piscataway: IEEE Press, 2002: 6.
[7] FAN Z M, SUN C L, BAI J. Aeroengine fault diagnosis introduction[M]. Beijing: Science Press, 2004 (in Chinese). 范作民, 孙春林, 白杰. 航空发动机故障诊断导论[M]. 北京: 科学出版社, 2004.
[8] TOLANI D, YASAR M, CHIN S, et al. Anomaly detection for health management of aircraft gas turbine engines[C]//Proceedings of the 2005, American Control Conference. Piscataway: IEEE Press, 2005: 459-464.
[9] ASTRUA P, CECCHI S, PIOLA S, et al. Axial compressor degradation effects on heavy duty gas turbines overall performances[C]//Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, 2013.
[10] BONS J P. A review of surface roughness effects in gas turbines[J]. Journal of Turbomachinery, 2010, 132(2): 021004.
[11] ZAITA A V, BULEY G, KARLSONS G. Performance deterioration modeling in aircraft gas turbine engines[J]. Journal of Engineering for Gas Turbines and Power, 1998, 120(2): 344-349.
[12] JAW L C, FRIEND R. ICEMS: a platform for advanced condition-based health management[C]//2001 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2001: 2909-2914.
[13] DOEL D L. TEMPER-a gas-path analysis tool for commercial jet engines[J]. Journal of Engineering for Gas Turbines and Power, 1994, 116(1): 82-89.
[14] HUANG J Q, WANG Q H, LU F. Research status and prospect of gas path fault diagnosis for aeroengine[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(4): 507-522 (in Chinese). 黄金泉, 王启航, 鲁峰. 航空发动机气路故障诊断研究现状与展望[J]. 南京航空航天大学学报, 2020, 52(4): 507-522.
[15] VOLPONI A J, TANG L. Improved engine health monitoring using full flight data and companion engine information[J]. SAE International Journal of Aerospace, 2016, 9(1): 91-102.
[16] ZHOU X, LU F, HUANG J Q. Fault diagnosis based on measurement reconstruction of HPT exit pressure for turbofan engine[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1156-1170.
[17] CHANG X D, HUANG J Q, LU F. Health parameter estimation with second-order sliding mode observer for a turbofan engine[J]. Energies, 2017, 10(7): 1040.
[18] CHANG X D, HUANG J Q, LU F. Robust in-flight sensor fault diagnostics for aircraft engine based on sliding mode observers[J]. Sensors (Basel, Switzerland), 2017, 17(4): 835.
[19] LU F, ZHENG W H, HUANG J Q, et al. Life cycle performance estimation and in-flight health monitoring for gas turbine engine[J]. Journal of Dynamic Systems, Measurement, and Control, 2016, 138(9): 091009.
[20] BROTHERTON T, VOLPONI A L, LUPPOLD R, et al. eSTORM: Enhanced self tuning on-board real-time engine model[C]//2003 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2003: 3075-3086.
[21] BAI J, FAN Z, SUN C. Consistence criterion for engine fault diagnosis decision[C]//Proceedings of the Third Asian-Pacific Conference on Aerospace Technology and Science, 2000: 407-413.
[22] DAVISON C R, BIRK A M. Development of fault diagnosis and failure prediction techniques for small gas turbine engines[C]//Proceedings of ASME Turbo Expo 2001: Power for Land, Sea, and Air, 2014.
[23] BORGUET S, DEWALLEF P, LE'ONARD O. A way to deal with model-plant mismatch for a reliable diagnosis in transient operation[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air, 2008: 593-602.
[24] DEWALLEF P, LE'ONARD O. On-line performance monitoring and engine diagnostic using robust Kalman filtering techniques[C]//Proceedings of ASME Turbo Expo 2003, Collocated With the 2003 International Joint Power Generation Conference, 2009: 395-403.
[25] WANG Q H, HUANG J Q, LU F. An improved particle filtering algorithm for aircraft engine gas-path fault diagnosis[J]. Advances in Mechanical Engineering, 2016, 8(7): 168781401665960.
[26] YOU C X, HUANG J Q, LU F. Recursive reduced kernel based extreme learning machine for aero-engine fault pattern recognition[J]. Neurocomputing, 2016, 214: 1038-1045.
[27] ZHOU H W, HUANG J Q, LU F, et al. Echo state kernel recursive least squares algorithm for machine condition prediction[J]. Mechanical Systems and Signal Processing, 2018, 111: 68-86.
[28] ZHOU H W, HUANG J Q, LU F. Reduced kernel recursive least squares algorithm for aero-engine degradation prediction[J]. Mechanical Systems and Signal Processing, 2017, 95: 446-467.
[29] ZEDDA M, SINGH R. Fault diagnosis of a turbofan engine using neural networks-A quantitative approach[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston: AIAA, 1998.
[30] PU X X, LIU S M, JIANG H D, et al. Sparse Bayesian learning for gas path diagnostics[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(7): 071601.
[31] LU F, JIANG J P, HUANG J Q, et al. Dual reduced kernel extreme learning machine for aero-engine fault diagnosis[J]. Aerospace Science and Technology, 2017, 71: 742-750.
[32] LU J J, HUANG J Q, LU F. Kernel extreme learning machine with iterative picking scheme for failure diagnosis of a turbofan engine[J]. Aerospace Science and Technology, 2020, 96: 105539.
[33] LU F, LI Z H, HUANG J Q, et al. Hybrid state estimation for aircraft engine anomaly detection and fault accommodation[J]. AIAA Journal, 2020, 58(4): 1748-1762.
[34] LU F. Aeroengine fault diagnostics based on fusion technique[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese). 鲁峰. 航空发动机故障诊断的融合技术研究[D]. 南京: 南京航空航天大学, 2009.
[35] MCFADDEN P D, SMITH J D. Vibration monitoring of rolling element bearings by the high-frequency resonance technique—A review[J]. Tribology International, 1984, 17(1): 3-10.
[36] LIANG M, SOLTANI BOZCHALOOI I. An energy operator approach to joint application of amplitude and frequency-demodulations for bearing fault detection[J]. Mechanical Systems and Signal Processing, 2010, 24(5): 1473-1494.
[37] ANTONI J. Cyclic spectral analysis of rolling-element bearing signals: facts and fictions[J]. Journal of Sound and Vibration, 2007, 304(3-5): 497-529.
[38] DYBAŁA J, ZIMROZ R. Rolling bearing diagnosing method based on Empirical Mode Decomposition of machine vibration signal[J]. Applied Acoustics, 2014, 77: 195-203.
[39] ANTONI J. Fast computation of the kurtogram for the detection of transient faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124.
[40] LUAN X C, SHA Y D. Technology to extract weak fault characteristic signal of intermediate bearing of some turbofan engine[J]. Science Technology and Engineering, 2018, 18(13): 167-174 (in Chinese). 栾孝驰, 沙云东. 某型涡扇发动机中介轴承微弱故障特征信号提取技术[J]. 科学技术与工程, 2018, 18(13): 167-174.
[41] YUAN Y, ZHAO X, FEI J Y, et al. Study on fault diagnosis of rolling bearing based on time-frequency generalized dimension[J]. Shock and Vibration, 2015, 2015: 808457.
[42] SHANG B L, XIE Z L, CHENG L, et al. Early fault diagnosis of complex rotor systems by EMD-ICA[J]. Science Technology and Engineering, 2014, 14(2): 265-271 (in Chinese). 尚柏林, 谢紫龙, 程礼, 等. EMD与ICA相结合的复杂转子系统早期故障诊断[J]. 科学技术与工程, 2014, 14(2): 265-271.
[43] ZHANG Y. Fault diagnosis of rollingbearing's early weak fault based on resonance sparse decomposition[J]. Chinese Journal of Construction Machinery, 2017, 15(2): 182-188 (in Chinese). 张勇. 基于共振稀疏分解的滚动轴承早期微弱故障诊断[J]. 中国工程机械学报, 2017, 15(2): 182-188.
[44] WIGGINS R A. Minimum entropy deconvolution[J]. Geoexploration, 1978, 16(1-2): 21-35.
[45] SAWALHI N, RANDALL R B, ENDO H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2616-2633.
[46] WANG H C, CHEN J, DONG G M. Fault diagnosis method for rolling bearing's weak fault based on minimum entropy deconvolution and sparse decomposition[J]. Journal of Mechanical Engineering, 2013, 49(1): 88-94 (in Chinese). 王宏超, 陈进, 董广明. 基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J]. 机械工程学报, 2013, 49(1): 88-94.
[47] TANG G J, LIU S K. Incipient fault diagnosis method for rolling bearing based on VMD and spectral kurtosis[J]. China Measurement & Test, 2017, 43(9): 112-117 (in Chinese). 唐贵基, 刘尚坤. 基于VMD和谱峭度的滚动轴承早期故障诊断方法[J]. 中国测试, 2017, 43(9): 112-117.
[48] LIU S K, TANG G J, WANG X L. Incipient fault diagnosis method for rolling bearing based on MED and variational mode decomposition[J]. Journal of Mechanical Transmission, 2017, 41(9): 179-182 (in Chinese). 刘尚坤, 唐贵基, 王晓龙. 基于MED和变分模态分解的滚动轴承早期故障诊断方法[J]. 机械传动, 2017, 41(9): 179-182.
[49] MCDONALD G L, ZHAO Q, ZUO M J. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing, 2012, 33: 237-255.
[50] WANG C G, PANG Z, REN X P, et al. Early fault diagnosis of roller bearing based on ensemble local mean decomposition and maximum correlated kurtosis deconvolution[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(11): 1764-1770 (in Chinese). 王朝阁, 庞震, 任学平, 等. ELMD和MCKD在滚动轴承早期故障诊断中的应用[J]. 机械科学与技术, 2017, 36(11): 1764-1770.
[51] Editorial board forAeroengine Design Manual. Aeroengine design manual: Vol. 12[M]. Beijing: Aviation Industry Press, 2002 (in Chinese). 《航空发动机设计手册》总编委会. 航空发动机设计手册: 第12册[M]. 北京: 航空工业出版社, 2002.
[52] YANG Y. Failure analysis of aero-engine accessory gearbox[D]. Chongqing: Chongqing University, 2016 (in Chinese). 杨语. 航空发动机附件机匣传动齿轮失效分析研究[D]. 重庆: 重庆大学, 2016.
[53] CHEN L M, LI W T, WANG G, et al. Fracture failure analysis of driving bevel gear in main reducer nut in an aero-engine[C]//The 15th Annual Meeting of China Association for Science and Technology, the 13th Session: Proceedings of Aero-engine Design, Manufacturing and Application Technology Workshop, 2013: 484-488 (in Chinese). 陈立民, 李文天, 汪刚, 等. 某型发动机附件机匣主动锥齿轮断裂失效分析[C]//第十五届中国科协年会第13分会场: 航空发动机设计、制造与应用技术研讨会论文集, 2013: 484-488.
[54] SHI Y Y. Research on some reliability problems of accessory casing based on thermal analysis[D]. Shenyang: Northeastern University, 2009 (in Chinese). 史妍妍. 基于热分析的附件机匣若干可靠性问题研究[D]. 沈阳: 东北大学, 2009.
[55] MCFADDEN P D. Detecting fatigue cracks in gears by amplitude and phase demodulation of the meshing vibration[J]. Journal of Vibration and Acoustics, 1986, 108(2): 165-170.
[56] MCFADDEN P D. A technique for calculating the time domain averages of the vibration of the individual planet gears and the sun gear in an epicyclic gearbox[J]. Journal of Sound and Vibration, 1991, 144(1): 163-172.
[57] MCFADDEN P D, SMITH J D. An explanation for the asymmetry of the modulation sidebands about the tooth meshing frequency in epicyclic gear vibration[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1985, 199(1): 65-70.
[58] MCFADDEN P D. Examination of a technique for the early detection of failure in gears by signal processing of the time domain average of the meshing vibration[J]. Mechanical Systems and Signal Processing, 1987, 1(2): 173-183.
[59] LEI Y G, LIN J, ZUO M J, et al. Condition monitoring and fault diagnosis of planetary gearboxes: A review[J]. Measurement, 2014, 48: 292-305.
[60] SHARMA V, PAREY A. A review of gear fault diagnosis using various condition indicators[J]. Procedia Engineering, 2016, 144: 253-263.
[61] WANG D, TSUI K L, MIAO Q. Prognostics and health management: A review of vibration based bearing and gear health indicators[J]. IEEE Access, 2018, 6: 665-676.
[62] XUE S. An investigation of gear meshing behavior of planetary gear systems for improved fault diagnosis[D]. Perth: Curtin University, 2016.
[63] CHEN X W, FENG Z P. Time-frequency analysis of torsional vibration signals in resonance region for planetary gearbox fault diagnosis under variable speed conditions[J]. IEEE Access, 2017, 5: 21918-21926.
[64] SINOU J J, LEES A W. A non-linear study of a cracked rotor[J]. European Journal of Mechanics-A/Solids, 2007, 26(1): 152-170.
[65] PATEL T H, DARPE A K. Influence of crack breathing model on nonlinear dynamics of a cracked rotor[J]. Journal of Sound and Vibration, 2008, 311(3-5): 953-972.
[66] SINOU J J, LEES A W. The influence of cracks in rotating shafts[J]. Journal of Sound and Vibration, 2005, 285(4-5): 1015-1037.
[67] MENG G, HAHN E J. Dynamic response of a cracked rotor with some comments on crack detection[J]. Journal of Engineering for Gas Turbines and Power, 1997, 119(2): 447-455.
[68] ZHU H J, ZHAO M, WANG D Y. A study on the dynamics of a cracked Jeffcott rotor[J]. Journal of Vibration and Shock, 2001, 20(1): 1-4 (in Chinese). 朱厚军, 赵玫, 王德洋. Jeffcott裂纹转子动力特性的研究[J]. 振动与冲击, 2001, 20(1): 1-4.
[69] YANG Y F, REN X M, QIN W Y. Nonlinear response prediction of cracked rotor based on EMD[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
[70] SABNAVIS G, KIRK R G, KASARDA M, et al. Cracked shaft detection and diagnostics: A literature review[J]. The Shock and Vibration Digest, 2004, 36 (4): 287-296.
[71] WANG Y F, ZHU J, TENG G R, et al. 1(1/2)-dimension spectrum analysis on early cracked fault characters of aero engine rotors[J]. Journal of Vibration and Shock, 2015, 34(1): 88-93, 134 (in Chinese). 王艳丰, 朱靖, 滕光蓉, 等. 航空发动机转子早期裂纹故障振动特征的1(1/2)维谱分析[J]. 振动与冲击, 2015, 34(1): 88-93, 134.
[72] DARPE A K, GUPTA K, CHAWLA A. Coupled bending, longitudinal and torsional vibrations of a cracked rotor[J]. Journal of Sound and Vibration, 2004, 269(1-2): 33-60.
[73] NELSON H D, NATARAJ C. The dynamics of a rotor system with a cracked shaft[J]. Journal of Vibration, Acoustics, Stress and Reliability in Design, 1986, 108(2): 189-196.
[74] TIAN W G, PAN M C, LUO F L, et al. Design of special eddy current transducer for crack in an aeroengine labyrinth disc[J]. Chinese Journal of Sensors and Actuators, 2008, 21(7): 1151-1154 (in Chinese). 田武刚, 潘孟春, 罗飞路, 等. 用于某型航空发动机篦齿盘裂纹检测的专用涡流传感器设计[J]. 传感技术学报, 2008, 21(7): 1151-1154.
[75] TIAN W G, PAN M C, CHEN L X. In situ nondestructive testing for an aeroengine labyrinth disc[J]. Computer Measurement & Control, 2012, 20(8): 2031-2033 (in Chinese). 田武刚, 潘孟春, 陈棣湘. 航空发动机篦齿盘的原位无损检测[J]. 计算机测量与控制, 2012, 20(8): 2031-2033.
[76] FU G Q, ZHENG Y, JING P, et al. Development of endoscope and eddy current integral testing instrument and application on an aeroengine[J]. Nondestructive Testing Technologying, 2010, 32(2): 134-137 (in Chinese). 付刚强, 郑勇, 景鹏, 等. 内窥涡流一体化综合检测仪研制及在某航空发动机上的应用[J]. 无损检测, 2010, 32 (2): 134-137.
[77] DING X P, LI Z, WANG C, et al. The flaw detection method of the tenon tooth of the turbine disc[C]//Proceedings of the 9th Shaanxi NDT Annual Meeting, 2004: 141, 163-168 (in Chinese). 丁晓萍, 李泽, 王婵, 等. 涡轮盘榫齿探伤方法[C]//陕西省第九届无损检测年会论文集, 2004: 141, 163-168.
[78] WOIKE M, ABDUL-AZIZ A, CLEM M, et al. Optical strain and crack-detection measurements on a rotating disk[C]//Smart Sensor Phenomena, Technology, Networks, and Systems Integration, 2013, 8693: 173-188.
[79] HU, B, YU R Q, XU W J. Micro-magnetic NDT for surface crack defect in a GH4169 turbine disc simulated by artificial groove[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10): 3450-3456 (in Chinese). 胡博, 于润桥, 徐伟津. 人工槽模拟GH4169涡轮盘表面裂纹缺陷的微磁检测[J]. 航空学报, 2015, 36(10): 3450-3456.
[80] WEI G S, QI G J. Crack detection on dovetail gear of certain type airplane engine turbine disk[J]. Nondestructive Testing Technologying, 2009, 31(6): 497-498, 507 (in Chinese). 魏桂生, 齐共金. 飞机发动机涡轮盘榫齿裂纹的探伤[J]. 无损检测, 2009, 31(6): 497-498, 507.
[81] YU X, ZHANG W M, QIU Z C, et al. Differentialexcitation eddy current sensor testing for aircraft engine blades defect[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1582-1588 (in Chinese). 于霞, 张卫民, 邱忠超, 等. 飞机发动机叶片缺陷的差激励涡流传感器检测[J]. 北京航空航天大学学报, 2015, 41(9): 1582-1588.
[82] DONG L M, LI J, NI C Y, et al. Crack detection of engine blade based on laser-heating assisted surface acoustic waves generated by scanning laser[J]. Chinese Journal of Lasers, 2011, 38(11): 1103001 (in Chinese). 董利明, 李加, 倪辰荫, 等. 基于光热调制检测发动机叶片疲劳裂纹的激光声表面波方法[J]. 中国激光, 2011, 38(11): 1103001.
[83] DONG R Q, HE X, LIU Y A. The in-situ ultrasonic inspection of cracks in deep blade root[J]. Nondestructive Testing Technologying, 2016, 38(1): 38-40 (in Chinese). 董瑞琴, 何喜, 刘永安. 叶片深根裂纹的原位超声波检测[J]. 无损检测, 2016, 38(1): 38-40.
[84] ZENZINGER G, BAMBERG J, DUMM M, et al. Crack detection using EddyTherm[C]//AIP Conference Proceedings, 2005, 760 (1): 1646-1653.
[85] MA Y H, CAO C, HAO Y, et al. Structure and dynamics analysis of rotor system in geared turbofan engine[J]. Journal of Aerospace Power, 2015, 30(11): 2753-2761 (in Chinese). 马艳红, 曹冲, 郝勇, 等. 齿轮传动风扇发动机转子系统结构与动力学分析[J]. 航空动力学报, 2015, 30(11): 2753-2761.
[86] YAN W Z, LIAO X, CAO C, et al. Structure and dynamics analysis of low pressure rotor in geared turbofan[J]. Journal of Aerospace Power, 2015, 30(12): 2863-2869 (in Chinese). 颜文忠, 廖鑫, 曹冲, 等. 齿轮传动涡扇发动机低压转子结构与动力学分析[J]. 航空动力学报, 2015, 30(12): 2863-2869.
[87] MARSH G. Aero engines lose weight thanks to composites[J]. Reinforced Plastics, 2012, 56(6): 32-35.
[88] CAREY B. Southwest engine failure ripples: Reminiscent of 2016 inflight engine failure; carrier accelerates ultrasonic fan blade inspection[J]. Aviation Week & Space Technology, 2018: 1-27.
[89] WOIKE M, ABDUL-AZIZ A, OZA N, et al. New sensors and techniques for the structural health monitoring of propulsion systems[J]. The Scientific World Journal, 2013, 2013: 596506.
[90] GIURGIUTIU V, SOUTIS C. Enhanced composites integrity through structural health monitoring[J]. Applied Composite Materials, 2012, 19(5): 813-829.
[91] RULLI R P, DOTTA F. Developments towards the qualification of two SHM systems for S-SHM application[C]//Structural Health Monitoring, 2015.
[92] GHOSHAL A. Sensor applications for structural diagnostics and prognostics[C]//Proceedings of the International Symposium on Engineering under Uncertainty: Safety Assessment and Management (ISEUSAM-2012), 2013: 503-516.
[93] GARCIA I, BELOKI J, ZUBIA, J, et al. An optical fiber bundle sensor for tip clearance and tip timing measurements in a turbine rig[J]. Sensors (Basel, Switzerland), 2013, 13(6): 7385-7398.
[94] LIU P P, ZUO H F, FU Y, et al. Study of on-line monitoring and diagnosis of aero-engine rubbing fault[J]. Chinese Journal of Scientific Instrument, 2013, 34(7): 164-169 (in Chinese). 刘鹏鹏, 左洪福, 付宇, 等. 航空发动机碰摩故障在线监测与诊断研究[J]. 仪器仪表学报, 2013, 34(7): 164-169.
[95] LIN J M, LI H L, ZHAO J H. Study on dynamic monitoring technology of aero-engine blades[C]//The 9th International Symposium on NDT in Aerospace, 2017.
[96] ZHANG X W. Application of metal additive manufacturing in aero-engine[J]. Journal of Aerospace Power, 2016, 31(1): 10-16 (in Chinese). 张小伟. 金属增材制造技术在航空发动机领域的应用[J]. 航空动力学报, 2016, 31(1): 10-16.
[97] YAN X, RUAN X Q. Application and development of additive manufacturing technology in aeroengine[J]. Aeronautical Manufacturing Technology, 2016, 59(21): 70-75 (in Chinese). 闫雪, 阮雪茜. 增材制造技术在航空发动机中的应用及发展[J]. 航空制造技术, 2016, 59(21): 70-75.
[98] WANG Q, SUN Y. Applications of additive manufacturing technology on aero-engine[J]. Aeronautical Science & Technology, 2014, 25(9): 6-10 (in Chinese). 王强, 孙跃. 增材制造技术在航空发动机中的应用[J]. 航空科学技术, 2014, 25(9): 6-10.
[99] LI G Q. Present and future of aeroengine oil system[J]. Aeroengine, 2011, 37(6): 49-52, 62 (in Chinese). 李国权. 航空发动机滑油系统的现状及未来发展[J]. 航空发动机, 2011, 37(6): 49-52, 62.
[100] ZHU J, HE D, BECHHOEFER E. A survey of lubrication oil condition monitoring, diagnostics, and prognostics techniques and systems[J]. Journal of Chemical Science and Technology, 2013, 2(3): 100-115.
[101] SHINDE H, BEWOOR A. Analyzing the relationship between the deterioration of engine oil in terms of change in viscosity, conductivity and transmittance[C]//2017 International Conference on Advances in Mechanical, Industrial, Automation and Management Systems (AMIAMS). Piscataway: IEEE Press, 2017: 36-41.
[102] SHINDE H, BEWOOR A. Capacitive sensor for engine oil deterioration measurement[C]//American Institute of Physics Conference Series, 2018: 020099.
[103] BALASHANMUGAM V, GOBALAKICHENIN D. Development of dielectric sensor to monitor the engine lubricating oil degradation[J]. Thermal Science, 2016, 20(Suppl. 4): 1061-1069.
[104] GONG L H, XU Y J, HAN S S, et al. Research on fault monitoring and diagnosis system of multi-agents and network based aircraft engine lubrication system[J]. Lubrication Engineering, 2003, 28(1): 25-26, 43 (in Chinese). 龚烈航, 徐延军, 韩寿松, 等. 基于多Agent和网络的航空发动机滑油系统故障监测与诊断系统研究[J]. 润滑与密封, 2003, 28(1): 25-26, 43.
[105] ZHU H Q, MA X Y, ZHANG Y G, et al. Research on aero engine oil fault diagnosis expert system[J]. Microcomputer Information, 2008, 24(34): 150-152 (in Chinese). 朱焕勤, 马晓宇, 张永国, 等. 航空发动机油液故障诊断专家系统研究[J]. 微计算机信息, 2008, 24(34): 150-152.
[106] WANG L G. Research on fault diagnosis expert system of aviation engine's lubricating oil system[J]. Science & Technology Ecnony Market, 2010(9): 9-11 (in Chinese). 王立纲. 航空发动机的滑油系统故障诊断专家系统研究[J]. 科技经济市场, 2010(9): 9-11.
[107] HOU S L, WANG W, HU J H, et al. Fault diagnosis of aeroengine lubricating system based on genetic programming[J]. Journal of Vibration, Measurement & Diagnosis, 2008, 28(4): 400-403, 416 (in Chinese). 侯胜利, 王威, 胡金海, 等. 基于遗传编程的发动机滑油系统故障诊断[J]. 振动、测试与诊断, 2008, 28 (4): 400-403, 416.
[108] WANG D, YANG J F, JIAO Z. Research on fault diagnosis of aviation-engine lubricant system based on wavelet neural networks[J]. Instrumentation Technology, 2008(11): 10-12 (in Chinese). 王东, 杨军锋, 焦准. 基于小波网络航空发动机滑油系统故障诊断方法研究[J]. 仪表技术, 2008(11): 10-12.
[109] JIAO Z, YANG D W. Research on aviation-engine lubricant system fault diagnosis based on wavelet neural networks[J]. Aviation Maintenance & Engineering, 2009(1): 58-60 (in Chinese). 焦准, 杨笃伟. 基于小波网络航空发动机滑油系统故障诊断方法研究[J]. 航空维修与工程, 2009(1): 58-60.
[110] ZHANG R, XIE W J. Research on aeroengine lubricant system fault diagnosis based on wavelet neural network[J]. Aeronautical Manufacturing Technology, 2009, 52(6): 85-89 (in Chinese). 张蓉, 谢武杰. 基于小波神经网络航空发动机滑油系统故障诊断方法研究[J]. 航空制造技术, 2009, 52(6): 85-89.
[111] REN Z C. Research on application of aero-engine condition monitoring in lubricating oil system of test bench[J]. Science and Technology Innovation Herald, 2012, 9(10): 81 (in Chinese). 任忠朝. 航空发动机状态监控在试车台滑油系统上的应用研究[J]. 科技创新导报, 2012, 9(10): 81.
[112] ZHANG D F, DUANMU J S, CAO Y Q, et al. Fusion diagnosis of engine lub oil system based on integrated intelligent algorithm[J]. Measurement & Control Technology, 2013, 32(10): 44-47, 51 (in Chinese). 张东峰, 端木京顺, 曹轶乾, 等. 基于集成智能算法的发动机滑油系统融合诊断[J]. 测控技术, 2013, 32(10): 44-47, 51.
[113] XU W, CHENG G, CHEN Y T, et al. Method for fault diagnosis of Bayesian network inference in marine lube oil system[J]. Journal of Sichuan Ordnance, 2015, 36(3): 86-90 (in Chinese). 许伟, 程刚, 陈于涛, 等. 舰船柴油主机滑油系统贝叶斯网络推理故障诊断方法[J]. 四川兵工学报, 2015, 36 (3): 86-90.
[114] WANG X G, LIU Z G, ZHENG Y, et al. Application of statistical theory in fault diagnosis of aero-engine lubricating oil system[J]. Plant Maintenance Engineering, 2016 (11): 114-117 (in Chinese). 王晓钢, 刘振岗, 郑宇, 等. 统计诊断理论用于航空发动机滑油系统故障诊断[J]. 设备管理与维修, 2016 (11): 114-117.
[115] CHEN N T, MA T, WANG J, et al. Aviation engine oil leakage fault analysis based on fuzzy fault tree theory[J]. Computer Measurement & Control, 2016, 24 (6): 64-67 (in Chinese). 陈农田, 马婷, 王杰, 等. 模糊故障树分析法在航空发动机滑油渗漏分析中的应用[J]. 计算机测量与控制, 2016, 24(6): 64-67.
[116] CHEN K J, CHEN Y Y, WU X W. Application of grey incidence fault tree analysis in aero-engine lubricant system[J]. Journal of Wuhan University of Technology (Information & Management Engineering), 2017, 39(4): 386-390 (in Chinese). 陈可嘉, 陈媛媛, 吴兴旺. 灰色关联故障树在航空发动机滑油系统的应用[J]. 武汉理工大学学报(信息与管理工程版), 2017, 39(4): 386-390.
[117] JIA G F. Application of fuzzy tree in fault diagnosis of marine diesel engine lubricating oil system[J]. Hebei Agricultural Machinery, 2020(5): 83-84, 109 (in Chinese). 贾广付. 模糊故障树在船舶柴油机滑油系统故障诊断中的应用[J]. 河北农机, 2020(5): 83-84, 109.
[118] YU X, ZHAO Y, GENG J W. Knowledge acquisition of expert diagnosis of a oil system based on extended fault tree[J]. Science & Technology Information, 2014, 12(10): 14 (in Chinese). 于鑫, 赵勇, 耿建伟. 基于扩展故障树的某滑油系统专家诊断知识获取[J]. 科技资讯, 2014, 12(10): 14.
[119] LIANG M Z, ZHOU D J, ZHANG H S, et al. Gas turbine lubricating oil system fault diagnosis based on improved D-S evidence theory[J]. Gas Turbine Technology, 2018, 31(2): 17-22, 36 (in Chinese). 梁茂宗, 周登极, 张会生, 等. 基于改进D-S证据理论的燃气轮机滑油系统故障诊断[J]. 燃气轮机技术, 2018, 31(2): 17-22, 36.
[120] GUO P Y, QIN L S, YU Q, et al. Discussion on No. 3 bearing fault of CF56-3 engine[J]. Aviation Engineering & Maintenance, 2001(6): 18-20 (in Chinese). 郭盼优, 秦理锁, 于强, 等. CFM56-3发动机3号轴承故障探讨[J]. 航空工程与维修, 2001(6): 18-20.
[121] WAN J. Cause analysis of metal chip failure ofLycoming engine[J]. Journal of Flying College Caac, 2005, 16(6): 62-64 (in Chinese). 万军. 莱康明发动机金属屑故障成因分析[J]. 中国民航飞行学院学报, 2005, 16(6): 62-64.
[122] ZHANG J, ZHU Z X, CHEN D, et al. Applications of atomic emission spectrometric techniques on wear failure analysis of aircraft engine[J]. Failure Analysis and Prevention, 2007, 2(2): 62-64, 33 (in Chinese). 张晶, 朱子新, 陈栋, 等. 原子发射光谱技术在航空发动机磨损失效分析中的应用[J]. 失效分析与预防, 2007, 2(2): 62-64, 33.
[123] SUN H G, HUO W J, YU H B, et al. Monitoring and diagnosis technology of aero engine oil system[C]//2000 Annual Meeting of Combustion, Heat and Mass Transfer Committee of Power Branch of Chinese Aeronautical Society, 2000: 23-24, 38 (in Chinese). 孙护国, 霍武军, 于海滨, 等. 航空发动机滑油系统监控与诊断技术[C]//中国航空学会动力专业分会燃烧与传热传质专业委员会学术年会, 2000: 23-24, 38.
[124] YAO H Y. Application of lubricant chip analysis on aero-engine condition monitoring[J]. Failure Analysis and Prevention, 2006, 1(3): 60-63 (in Chinese). 姚红宇. 滑油中金属屑分析在航空发动机状态监控中的应用[J]. 失效分析与预防, 2006, 1(3): 60-63.
[125] ZHU Z X, CHEN D, ZHANG J, et al. Large metal debris monitoring techniques for aircraft engines[J]. Aviation Maintenance & Engineering, 2006(3): 30-32 (in Chinese). 朱子新, 陈栋, 张晶, 等. 航空发动机大颗粒金属磨屑监控技术[J]. 航空维修与工程, 2006(3): 30-32.
[126] SAE. SAE AIR1828B: Guide engine lubrication system monitoring[S]. Warrendale: SAE International, 1984.
[127] SAE. AIR1828C: Guide to engine lubrication system monitoring: SAE AIR 1828: 2014[S]. Warrendale: SAE International, 2014.
[128] TOMS A, JORDAN E, HUMPHREY G. The success of filter debris analysis for J52 engine condition based maintenance[C]//41 st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2005.
[129] SUN Y S, YANG H, TONG H B, et al. Review of on-line detection for wear particles in lubricating oil of aviation engine[J]. Chinese Journal of Scientific Instrument, 2017, 38(7): 1561-1569 (in Chinese). 孙衍山, 杨昊, 佟海滨, 等. 航空发动机滑油磨粒在线监测[J]. 仪器仪表学报, 2017, 38(7): 1561-1569.
[130] LIN K, ZHAO J P, HAO J. Aeroengine lubricating oil metal chip detection system[J]. Information & Communications, 2017, 30(3): 81-82 (in Chinese). 林凯, 赵建平, 郝建. 一种航空发动机滑油金属屑检测系统[J]. 信息通信, 2017, 30(3): 81-82.
[131] SUN L P, CHEN G, CHEN L B, et al. Image recognition of aero-engine oil filter debris by kernel principle component analysis[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(6): 731-736 (in Chinese). 孙丽萍, 陈果, 陈立波, 等. 基于KPCA的航空发动机滑油滤磨屑图像识别[J]. 机械科学与技术, 2010, 29(6): 731-736.
[132] CHEN L B, CHEN G, SONG K, et al. Image-based quantitative analysis technique of aero-engine filter debris[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 368-376 (in Chinese). 陈立波, 陈果, 宋科, 等. 基于图像的发动机滑油滤磨屑定量分析技术[J]. 航空学报, 2011, 32(2): 368-376.
[133] CHEN G, SONG L Q, CHEN L B. Knowledge acquisition for aero-engine wear fault diagnosis based on rule extraction from neural networks[J]. Journal of Aerospace Power, 2008, 23(12): 2170-2176 (in Chinese). 陈果, 宋兰琪, 陈立波. 基于神经网络规则提取的航空发动机磨损故障诊断知识获取[J]. 航空动力学报, 2008, 23(12): 2170-2176.
[134] CHEN L B, SONG L Q, CHEN G. Study on fusion diagnosis techniques of wear faults in synthesized monitoring of aero-engine[J]. Journal of Aerospace Power, 2009, 24(1): 169-175 (in Chinese). 陈立波, 宋兰琪, 陈果. 航空发动机滑油综合监控中的磨损故障融合诊断研究[J]. 航空动力学报, 2009, 24(1): 169-175.
[135] SHANG W, WANG Y S, ZHANG M J, et al. Oil metal particles detection algorithm based on wavelet transform[J]. MATEC Web of Conferences, 2017, 100: 02001.
[136] ZHANG J, LI Y J, CAO Y Y, et al. Immune SVM used in wear fault diagnosis of aircraft engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1419-1425 (in Chinese). 张建, 李艳军, 曹愈远, 等. 免疫支持向量机用于航空发动机磨损故障诊断[J]. 北京航空航天大学学报, 2017, 43(7): 1419-1425.
[137] CHEN Y G, ZENG L C, LV M J. Fault simulation of the hydraulic position servo system based on AMESim[J]. Machine Tool & Hydraulics, 2007, 35(9): 215-216, 219 (in Chinese). 陈阳国, 曾良才, 吕敏建. 基于AMESim的液压位置伺服系统故障仿真[J]. 机床与液压, 2007, 35(9): 215-216, 219.
[138] ZHANG X Y, CHEN X H, HE Q F. Modeling and simulation for fault of hydraulic actuator based on AMESim[J]. Hydraulics Pneumatics & Seals, 2011, 31(10): 26-28, 48 (in Chinese). 张宪宇, 陈小虎, 何庆飞. 基于AMESim的液压缸故障建模与仿真[J]. 液压气动与密封, 2011, 31(10): 26-28, 48.
[139] YU L, YE Z F, WANG B. Simulation and experimental study of characteristics for aeroengine fuel metering device[J]. Aeroengine, 2015, 41(2): 85-88 (in Chinese). 余玲, 叶志锋, 王彬. 航空发动机燃油计量装置特性仿真与试验研究[J]. 航空发动机, 2015, 41(2): 85-88.
[140] GAO J H, ZHANG J, BIAN B H, et al. Simulation on lubrication system via AMESim[J]. Chinese Journal of Construction Machinery, 2016, 14(2): 137-141 (in Chinese). 高久好, 张靖, 卞斌华, 等. 基于AMESim的某润滑系统仿真[J]. 中国工程机械学报, 2016, 14(2): 137-141.
[141] CHEN X Z, XIA Z J, WANG L J. Application ofAMESim simulation analysis method in fuel regulator troubleshooting[J]. Aeroengine, 2019, 45(1): 46-50 (in Chinese). 陈新中, 夏宗记, 王玲君. AMESim仿真分析方法在燃油调节器排故中的应用[J]. 航空发动机, 2019, 45(1): 46-50.
[142] BAI J, ZHU Y X, HE W B, et al. Fault simulation of a certain type of aeroengine lubricating oil supply system based on AMESim[J]. Science Technology and Engineering, 2020, 20(9): 3784-3789 (in Chinese). 白杰, 朱永新, 何文博, 等. 基于AMESim的某型航空发动机滑油供油系统故障模拟[J]. 科学技术与工程, 2020, 20(9): 3784-3789.
[143] FU Q. Main fuel control system of aeroengine based on mode reference sliding mode control[J]. Chinese Hydraulics & Pneumatics, 2013(2): 77-79 (in Chinese). 傅强. 航空发动机主燃油机械液压控制系统仿真研究[J]. 液压与气动, 2013(2): 77-79.
[144] ZHANG L, FU J Y, LIU H Y. Simulation and analysis of servomachanism with feedback failure[J]. Chinese Hydraulics & Pneumatics, 2014(5): 122-125 (in Chinese). 张亮, 傅俊勇, 刘洪宇. 伺服机构反馈故障仿真与分析[J]. 液压与气动, 2014(5): 122-125.
[145] GAO Z H, MA C B, SONG D. Aircraft fuel feeding system performance degradation and failure prediction[J]. Journal of Northwestern Polytechnical University, 2015, 33(2): 209-215 (in Chinese). 高泽海, 马存宝, 宋东. 飞机燃油供油系统性能退化与故障预测[J]. 西北工业大学学报, 2015, 33(2): 209-215.
[146] YAN X H, GUO Y Q, YIN K, et al. Modeling simulation and optimization of oil system based on MATLAB/Simulink[J]. Journal of Aerospace Power, 2017, 32(3): 740-748 (in Chinese). 闫星辉, 郭迎清, 殷锴, 等. 基于MATLAB/Simulink的滑油系统建模仿真与优化[J]. 航空动力学报, 2017, 32(3): 740-748.
[147] DONG J. Simulationstudy on fault monitoring of hydraulic servo actuator based on model comparison[J]. Metrology & Measurement Technology, 2019, 39(5): 20-28 (in Chinese). 董骥. 基于模型比较的液压伺服作动器故障监控仿真研究[J]. 计测技术, 2019, 39(5): 20-28.
[148] YANG Y M, LU Q S. The research of dynamic modeling and analysis of commercial engine fuel-metering unit[J]. ManufacturingAutomation, 2016, 38(6): 106-110, 130 (in Chinese)
文章导航

/